Araştırma Makalesi
BibTex RIS Kaynak Göster

Saf ve karışık halde yetiştirilen sakallı kızılağaç (Alnus glutinosa Gearth. subsp. barbata) ve Doğu Kayını (Fagus orientalis Lipsky) fidanlarının kısa dönem biyokütle değerleri

Yıl 2018, Cilt: 19 Sayı: 1, 1 - 7, 15.04.2018
https://doi.org/10.17474/artvinofd.333484

Öz

Bu çalışmanın amacı; azot bağlayan Frankia
alni
(Woronin) Von Tubeuf bakterilerine sahip sakallı
kızılağaç (
Alnus glutinosa Gearth.
subsp.
barbata), doğu kayını (Fagus orientalis Lipsky.) fidanlarının
gelişmesine etkisini ortaya koymaktır. Bunun için 2014 yılı kasım ayında Artvin
İli Arhavi İlçesi Ortacalar Mevkiinde 6 adet 200 m
2 büyüklüğünde
deneme alanı tesis edilmiştir. Deneme alanlarının ikisine sakallı kızılağaç,
ikisine doğu kayını, ikisine de karışık halde sakallı kızılağaç ve doğu kayını
fidanları dikilmiştir. Fidanlar 1 m x 1m aralık ve mesafeler ile sıralı olarak
dikilmişlerdir. Her bir deneme alanına 200’er adet fidan dikilmiştir.
Dikimlerde 1 yaşında sakallı kızılağaç ve 2 yaşında doğu kayını fidanları
kullanılmıştır. Dikimden önce 30 adet doğu kayını ve 30 adet sakallı kızılağaç
fidanlarının kök boğazı çapları (KBÇ), fidan boyları (FB), kök kuru ağırlıkları
(KKA), gövde kuru ağırlıkları (GKA) ve fidan kuru ağırlıkları (FKA)
ölçülmüştür. 2016 yılının vejetasyon dönemi sonunda saf sakallı kızılağaçlardan
(30 adet), saf doğu kayınlardan (30 adet), karışık yetiştirilen sakallı
kızılağaçlardan (30 adet) ve karışık yetiştirilen doğu kayını fidanlarından (30
adet) toplam 120 adet fidan sökülmüş ve KBÇ, FB, KKA, GKA ve FKA değerleri yeniden
ölçülmüştür. Ölçüm sonuçlarına göre; dikimden iki yıl sonra karışık halde
yetiştirilen doğu kayını fidanlarının, saf halde yetiştirilen doğu kayını
fidanlarına göre daha iyi gelişim gösterdiği tespit edilmiştir. Ağrılıklarda
meydana gelen artımlardan gövde ağırlığındaki artımın istatistiksel olarak
anlamlı olduğu, kök ve fidan ağırlığındaki artımın ise önemsiz olduğu sonucuna
varılmıştır.


Kaynakça

  • Amara MAT, Dahdoh MSA, (1997) Effect of inoculation with plant growth-promoting rhizobacteria (PGPR) on yield and uptake of nutrients by wheat grown on sandy soil. Egypt J Soil 37:467–484
  • Ayan S, Sivacioglu A, (2006) Review of the fast growing forest tree species in Turkey, Bol. Inf. CIDEU 2:57-71.
  • Binkley D, Lousier JD, Cromack K, (1984) Ecosystem Effects of Sitka Alder in a Douglas-fir Plantation, Forest Sci, 30 (1): 26-35
  • Bissonnette C, Fahlman B, Peru KM, Khasa DP, Greer CW, Headley JV, Roy S, (2014) Symbiosis with Frankia sp. benefits the establishment of Alnus viridis ssp. crispa and Alnus incana ssp. rugosa in tailings sand from the Canadian oil sands industry. Ecological engineering, 68: 167-175.
  • Biswas JC, Ladha JK, Dazzo FB (2000) Rhizobial inoculation influences seedling vigor and yield of rice. Agron J, 92:880–886
  • Cakmakcı R, Kantar F, Sahin F, (2001) Effect of N2-fixing bacterial inoculations on yield of sugar beet and barley. Journal of Plant Nutrition and Soil Science, 164: 527531
  • Callaway RM, Pennings CS, (2000) Facilitation May Buffer Competitive Effects: Indirect and Diffuse Interactions among Salt Marsh Plants, The American Naturalist, 156 (4): 416-424.
  • Canbolat MY, Barik K, Çakmakçi R, Şahin F, (2006) Effects of mineral and biofertilizers on barley growth on compacted soil. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 56(4):324-332.
  • Chen C, Bauske EM, Musson G, Rodriguez-Kabana R, Kloepper JW (1994) Biological control of Fusarium on cotton by use of endophytic bacteria. Biol Control 5:83–91
  • Dawson JO, (2007) Ecology of actinorhizal plants. In Nitrogen-fixing actinorhizal symbioses, Springer Netherlands, pp. 199-234.
  • DeBell DS, Radwan MA, (1979) Growth and nitrogen relations of coppiced black cottonwood and red alder in pure and mixed plantations. Bot. Gaz. 140: 97-I01.
  • Diagne N, Arumugam K, Ngom M, Nambiar-Veetil M, Franche C, Narayanan KK, Laplaze L, (2013) Use of Frankia and actinorhizal plants for degraded lands reclamation. BioMed research international.
  • Diagne N, Ngom M, Djighaly PI, Ngom D, Ndour B, Cissokho M, Champion A, (2015) Remediation of Heavy Metal-Contaminated Soils and Enhancement of Their Fertility with Actinorhizal Plants. In Heavy Metal Contamination of Soils Springer International, pp. 355-366.
  • Figueiredo, MDVB, Seldin L, de Araujo F F, Mariano, RDLR, (2010) Plant growth promoting rhizobacteria: fundamentals and applications. In Plant growth and health promoting bacteria Springer, Berlin Heidelberg, pp. 21-43.
  • Giardina C, Huffmans S, Binkley D, Caldwell B, (1995) Alders increase soil phosphorus availability in a Douglas-fir plantation. Can. J. For. Res. 25: 1652–1657.
  • Hamzeh'ee B, Naqinezhad A, Attar F, Ghahreman A, Assadi M, Prieditis, N, (2008) Phytosociological survey of remnant Alnus glutinosa ssp. barbata communities in the lowland Caspian forests of northern Iran. Phytocoenologia, 38(1-2): 117-132.
  • Huss-Danell, K, Ohlsson H, (1992) Distribution of biomass and nitrogen among plant parts and soil nitrogen in a young Alnus incana stand. Canadian journal of botany, 70(8): 1545-1549.
  • Kantar F, Algur OF, (1999) Sugar beet and barley yield in relation to Bacillus polymyxa and Bacillus megaterium var. phosphaticum inoculation. Journal of Plant Nutrition and Soil Science, 162: 437442.
  • Karthikeyan A, Chandrasekaran K, Geetha M, Kalaiselvi R, (2013) Growth response of Casuarina equisetifolia Forst. rooted stem cuttings to Frankia in nursery and field conditions. Journal of biosciences, 38(4): 741.
  • Kloepper JW, Schroth MN, Miller TD, (1980) Effects of rhizosphere colonization by plant growth promoting rhizobacteria on potato plant development and yield. Phytopathology 70:1078–1082
  • Miller RE, Murray MD, (1978) The effect of red alder on growth of Douglas fir. In Utilization and management of alder, USDA Forest Serv, p. 283-306.
  • Moffat AJ, (2000) Effects of inoculation with Frankia on the growth and nutrition of alder species and interplanted Japanese larch on restored mineral workings. Forestry, 73(3): 215-223.
  • Mortimer PE, Gui H, Xu J, Zhang C, Barrios E, Hyde KD, (2015) Alder trees enhance crop productivity and soil microbial biomass in tea plantations. Applied Soil Ecology, 96: 25-32.
  • Orczewska A, Piotrowska A, Lemanowicz J, (2012) Soil acid phosphomonoesterase activity and phosphorus forms in ancient and post-agricultural black alder (Alnus glutinosa (L.) Gaertn.) woodlands. Acta Societatis Botanicorum Poloniae, 81(2): 81-86
  • Pak M, Gülci N, (2017) A comparative economic evaluation of bucking deciduous trees: A Case study of Oriental beech (Fagus orientalis) stands in Northeastern Turkey. Journal of the Faculty of Forestry Istanbul University, 67(1): 72-79
  • Pan B, Bai YM, Leibovitch S, Smith DL (1999) Plant growth promoting rhizobacteria and kinetic as ways to promote corn growth and yield in short season areas. Eur J Agron 11:179–186
  • Radosevich SR, Hibbs, DE, Ghersa, CM, (2006) Effects of species mixtures on growth and stand development of Douglas-fir and red alder, Canadian Journal of Forest Researhces, 36: 768-782.
  • Rehan M, Swanson E, Tisa LS, (2016) Frankia as a Biodegrading Agent. In Actinobacteria-Basics and Biotechnological Applications, InTech.
  • Shainsky LJ, Radosevich RS, (1991) Analysis of Yield-Density Relationships in Experimental Stands of Douglas-Fir and Red Alder Seedlings, Forest Science, 37(2): 574-592.
  • Stokdyk J.P, Herrman KS, (2014) Short-term impacts of Frangula alnus litter on forest soil properties. Water, Air, & Soil Pollution, 225(6): 2000.
  • Tufekcioglu A, Guner S, Tilki F, (2005) Thinning effects on production, root biomass and some soil properties in a young oriental beech stand in Artvin, Turkey. Journal of environmental biology, 26(1): 91-95.
  • Van Der Meiden HH, (1961) Alder in mixture with poplar, Nederlands bosbouw tiddschrift 33:168-171.
  • Vares A, Lohmus K, Truu M, Truu J, Tullus H, Kanal A, (2004) Productivity of black alder (Alnus glutinosa L Gaertn.) plant on reclaimed oil-shale mining detritus and mineral soils in relation to rhizosphere conditions. Goryuchiye Slantsy (Tallin, 1984) 21 (1): 43–58.
  • Varkouhi S, Namiranian M, Joorgholami M, (2017) Commercial tree products modeling case study in Gorazbon district, Kheyroud Forest, Iran. Forest Science and Technology, 13(2): 71-76.
  • Vessey JK, (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant and soil, 255(2): 571-586.
  • Voigtlaender M, Laclau JP, de Moraes Gonçalves JL, de Cássia Piccolo M, Moreira, MZ, Nouvellon Y, Ranger J, Bouillet JP, (2012) Introducing Acacia mangium trees in Eucalyptus grandis plantations: consequences for soil organic matter stocks and nitrogen mineralization. Plant and Soil, 352 (1-2): 99-111.
  • Zhang F, Dashti N, Hynes RK, Smith DL (1996) Plant growth-promoting rhizobacteria and soybean (Glycine max (L.) Merr.) Nodulation and fixation at suboptimal root zone temperatures. Ann Bot, 7:453–459.

Short term biomass values of pure and mixed grown black alder (Alnus glutinosa Gearth. subsp. barbata) and oriental beech (Fagus orientalis Lipsky) seedlings

Yıl 2018, Cilt: 19 Sayı: 1, 1 - 7, 15.04.2018
https://doi.org/10.17474/artvinofd.333484

Öz

The aim of this study is to investigate the effect of black alder (Alnus glutinosa Gearth. subsp. barbata) which have nitrogen fixing bacteria Frankia alni (Woronin) Von Tubeuf on the development of oriental beech (Fagus orientalis Lipsky). For this purpose, in nowember 2014, sample plots of 200 m2 has been established in the Ortaca Region of Arhavi District of Artvin. Two of the sample plots were planted with pure black alder, two pure oriental beech, two mixed black alder and oriental beech. Seedlings were planted in sequence with 1 x 1 m spacing and distances. 200 seedlings were planted in each sample plots. One year old black alder and two year old oriental beech seedlings were used in the plantings. Before planting, root collar diameter (RCD), seedling length (SL), root dry weights (RDW), stem dry weights (StDW) and seedling dry weights (SdDW) of 30 oriental beech and 30 black alder seedlings were measured. At the end of the vegetation period of 2016, a total of 120 seedlings were removed from the sample plots of pure black alder (30 seedlings), pure oriental beech (30 seedlings), mixed grown black alder (30 seedlings) and mixed grown oriental beech seedlings (30 seedlings) and RCD, SL, RDW, StDW, and SdDW values were re-measured. As a result of the measurements, it was determined that the oriental beech seedlings grown in mixed plots two years after planting showed better development than the eastern beech seedlings grown in pure plots. The increase in body weight was statistically significant, while the increase in root weight and seed weight was not significant.

Kaynakça

  • Amara MAT, Dahdoh MSA, (1997) Effect of inoculation with plant growth-promoting rhizobacteria (PGPR) on yield and uptake of nutrients by wheat grown on sandy soil. Egypt J Soil 37:467–484
  • Ayan S, Sivacioglu A, (2006) Review of the fast growing forest tree species in Turkey, Bol. Inf. CIDEU 2:57-71.
  • Binkley D, Lousier JD, Cromack K, (1984) Ecosystem Effects of Sitka Alder in a Douglas-fir Plantation, Forest Sci, 30 (1): 26-35
  • Bissonnette C, Fahlman B, Peru KM, Khasa DP, Greer CW, Headley JV, Roy S, (2014) Symbiosis with Frankia sp. benefits the establishment of Alnus viridis ssp. crispa and Alnus incana ssp. rugosa in tailings sand from the Canadian oil sands industry. Ecological engineering, 68: 167-175.
  • Biswas JC, Ladha JK, Dazzo FB (2000) Rhizobial inoculation influences seedling vigor and yield of rice. Agron J, 92:880–886
  • Cakmakcı R, Kantar F, Sahin F, (2001) Effect of N2-fixing bacterial inoculations on yield of sugar beet and barley. Journal of Plant Nutrition and Soil Science, 164: 527531
  • Callaway RM, Pennings CS, (2000) Facilitation May Buffer Competitive Effects: Indirect and Diffuse Interactions among Salt Marsh Plants, The American Naturalist, 156 (4): 416-424.
  • Canbolat MY, Barik K, Çakmakçi R, Şahin F, (2006) Effects of mineral and biofertilizers on barley growth on compacted soil. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 56(4):324-332.
  • Chen C, Bauske EM, Musson G, Rodriguez-Kabana R, Kloepper JW (1994) Biological control of Fusarium on cotton by use of endophytic bacteria. Biol Control 5:83–91
  • Dawson JO, (2007) Ecology of actinorhizal plants. In Nitrogen-fixing actinorhizal symbioses, Springer Netherlands, pp. 199-234.
  • DeBell DS, Radwan MA, (1979) Growth and nitrogen relations of coppiced black cottonwood and red alder in pure and mixed plantations. Bot. Gaz. 140: 97-I01.
  • Diagne N, Arumugam K, Ngom M, Nambiar-Veetil M, Franche C, Narayanan KK, Laplaze L, (2013) Use of Frankia and actinorhizal plants for degraded lands reclamation. BioMed research international.
  • Diagne N, Ngom M, Djighaly PI, Ngom D, Ndour B, Cissokho M, Champion A, (2015) Remediation of Heavy Metal-Contaminated Soils and Enhancement of Their Fertility with Actinorhizal Plants. In Heavy Metal Contamination of Soils Springer International, pp. 355-366.
  • Figueiredo, MDVB, Seldin L, de Araujo F F, Mariano, RDLR, (2010) Plant growth promoting rhizobacteria: fundamentals and applications. In Plant growth and health promoting bacteria Springer, Berlin Heidelberg, pp. 21-43.
  • Giardina C, Huffmans S, Binkley D, Caldwell B, (1995) Alders increase soil phosphorus availability in a Douglas-fir plantation. Can. J. For. Res. 25: 1652–1657.
  • Hamzeh'ee B, Naqinezhad A, Attar F, Ghahreman A, Assadi M, Prieditis, N, (2008) Phytosociological survey of remnant Alnus glutinosa ssp. barbata communities in the lowland Caspian forests of northern Iran. Phytocoenologia, 38(1-2): 117-132.
  • Huss-Danell, K, Ohlsson H, (1992) Distribution of biomass and nitrogen among plant parts and soil nitrogen in a young Alnus incana stand. Canadian journal of botany, 70(8): 1545-1549.
  • Kantar F, Algur OF, (1999) Sugar beet and barley yield in relation to Bacillus polymyxa and Bacillus megaterium var. phosphaticum inoculation. Journal of Plant Nutrition and Soil Science, 162: 437442.
  • Karthikeyan A, Chandrasekaran K, Geetha M, Kalaiselvi R, (2013) Growth response of Casuarina equisetifolia Forst. rooted stem cuttings to Frankia in nursery and field conditions. Journal of biosciences, 38(4): 741.
  • Kloepper JW, Schroth MN, Miller TD, (1980) Effects of rhizosphere colonization by plant growth promoting rhizobacteria on potato plant development and yield. Phytopathology 70:1078–1082
  • Miller RE, Murray MD, (1978) The effect of red alder on growth of Douglas fir. In Utilization and management of alder, USDA Forest Serv, p. 283-306.
  • Moffat AJ, (2000) Effects of inoculation with Frankia on the growth and nutrition of alder species and interplanted Japanese larch on restored mineral workings. Forestry, 73(3): 215-223.
  • Mortimer PE, Gui H, Xu J, Zhang C, Barrios E, Hyde KD, (2015) Alder trees enhance crop productivity and soil microbial biomass in tea plantations. Applied Soil Ecology, 96: 25-32.
  • Orczewska A, Piotrowska A, Lemanowicz J, (2012) Soil acid phosphomonoesterase activity and phosphorus forms in ancient and post-agricultural black alder (Alnus glutinosa (L.) Gaertn.) woodlands. Acta Societatis Botanicorum Poloniae, 81(2): 81-86
  • Pak M, Gülci N, (2017) A comparative economic evaluation of bucking deciduous trees: A Case study of Oriental beech (Fagus orientalis) stands in Northeastern Turkey. Journal of the Faculty of Forestry Istanbul University, 67(1): 72-79
  • Pan B, Bai YM, Leibovitch S, Smith DL (1999) Plant growth promoting rhizobacteria and kinetic as ways to promote corn growth and yield in short season areas. Eur J Agron 11:179–186
  • Radosevich SR, Hibbs, DE, Ghersa, CM, (2006) Effects of species mixtures on growth and stand development of Douglas-fir and red alder, Canadian Journal of Forest Researhces, 36: 768-782.
  • Rehan M, Swanson E, Tisa LS, (2016) Frankia as a Biodegrading Agent. In Actinobacteria-Basics and Biotechnological Applications, InTech.
  • Shainsky LJ, Radosevich RS, (1991) Analysis of Yield-Density Relationships in Experimental Stands of Douglas-Fir and Red Alder Seedlings, Forest Science, 37(2): 574-592.
  • Stokdyk J.P, Herrman KS, (2014) Short-term impacts of Frangula alnus litter on forest soil properties. Water, Air, & Soil Pollution, 225(6): 2000.
  • Tufekcioglu A, Guner S, Tilki F, (2005) Thinning effects on production, root biomass and some soil properties in a young oriental beech stand in Artvin, Turkey. Journal of environmental biology, 26(1): 91-95.
  • Van Der Meiden HH, (1961) Alder in mixture with poplar, Nederlands bosbouw tiddschrift 33:168-171.
  • Vares A, Lohmus K, Truu M, Truu J, Tullus H, Kanal A, (2004) Productivity of black alder (Alnus glutinosa L Gaertn.) plant on reclaimed oil-shale mining detritus and mineral soils in relation to rhizosphere conditions. Goryuchiye Slantsy (Tallin, 1984) 21 (1): 43–58.
  • Varkouhi S, Namiranian M, Joorgholami M, (2017) Commercial tree products modeling case study in Gorazbon district, Kheyroud Forest, Iran. Forest Science and Technology, 13(2): 71-76.
  • Vessey JK, (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant and soil, 255(2): 571-586.
  • Voigtlaender M, Laclau JP, de Moraes Gonçalves JL, de Cássia Piccolo M, Moreira, MZ, Nouvellon Y, Ranger J, Bouillet JP, (2012) Introducing Acacia mangium trees in Eucalyptus grandis plantations: consequences for soil organic matter stocks and nitrogen mineralization. Plant and Soil, 352 (1-2): 99-111.
  • Zhang F, Dashti N, Hynes RK, Smith DL (1996) Plant growth-promoting rhizobacteria and soybean (Glycine max (L.) Merr.) Nodulation and fixation at suboptimal root zone temperatures. Ann Bot, 7:453–459.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Sinan Güner 0000-0002-2781-7083

Aşkın Göktürk

Mehmet Küçük

Yayımlanma Tarihi 15 Nisan 2018
Kabul Tarihi 28 Kasım 2017
Yayımlandığı Sayı Yıl 2018Cilt: 19 Sayı: 1

Kaynak Göster

APA Güner, S., Göktürk, A., & Küçük, M. (2018). Saf ve karışık halde yetiştirilen sakallı kızılağaç (Alnus glutinosa Gearth. subsp. barbata) ve Doğu Kayını (Fagus orientalis Lipsky) fidanlarının kısa dönem biyokütle değerleri. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 19(1), 1-7. https://doi.org/10.17474/artvinofd.333484
AMA Güner S, Göktürk A, Küçük M. Saf ve karışık halde yetiştirilen sakallı kızılağaç (Alnus glutinosa Gearth. subsp. barbata) ve Doğu Kayını (Fagus orientalis Lipsky) fidanlarının kısa dönem biyokütle değerleri. AÇÜOFD. Nisan 2018;19(1):1-7. doi:10.17474/artvinofd.333484
Chicago Güner, Sinan, Aşkın Göktürk, ve Mehmet Küçük. “Saf Ve karışık Halde yetiştirilen Sakallı kızılağaç (Alnus Glutinosa Gearth. Subsp. Barbata) Ve Doğu Kayını (Fagus Orientalis Lipsky) fidanlarının kısa dönem biyokütle değerleri”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 19, sy. 1 (Nisan 2018): 1-7. https://doi.org/10.17474/artvinofd.333484.
EndNote Güner S, Göktürk A, Küçük M (01 Nisan 2018) Saf ve karışık halde yetiştirilen sakallı kızılağaç (Alnus glutinosa Gearth. subsp. barbata) ve Doğu Kayını (Fagus orientalis Lipsky) fidanlarının kısa dönem biyokütle değerleri. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 19 1 1–7.
IEEE S. Güner, A. Göktürk, ve M. Küçük, “Saf ve karışık halde yetiştirilen sakallı kızılağaç (Alnus glutinosa Gearth. subsp. barbata) ve Doğu Kayını (Fagus orientalis Lipsky) fidanlarının kısa dönem biyokütle değerleri”, AÇÜOFD, c. 19, sy. 1, ss. 1–7, 2018, doi: 10.17474/artvinofd.333484.
ISNAD Güner, Sinan vd. “Saf Ve karışık Halde yetiştirilen Sakallı kızılağaç (Alnus Glutinosa Gearth. Subsp. Barbata) Ve Doğu Kayını (Fagus Orientalis Lipsky) fidanlarının kısa dönem biyokütle değerleri”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 19/1 (Nisan 2018), 1-7. https://doi.org/10.17474/artvinofd.333484.
JAMA Güner S, Göktürk A, Küçük M. Saf ve karışık halde yetiştirilen sakallı kızılağaç (Alnus glutinosa Gearth. subsp. barbata) ve Doğu Kayını (Fagus orientalis Lipsky) fidanlarının kısa dönem biyokütle değerleri. AÇÜOFD. 2018;19:1–7.
MLA Güner, Sinan vd. “Saf Ve karışık Halde yetiştirilen Sakallı kızılağaç (Alnus Glutinosa Gearth. Subsp. Barbata) Ve Doğu Kayını (Fagus Orientalis Lipsky) fidanlarının kısa dönem biyokütle değerleri”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, c. 19, sy. 1, 2018, ss. 1-7, doi:10.17474/artvinofd.333484.
Vancouver Güner S, Göktürk A, Küçük M. Saf ve karışık halde yetiştirilen sakallı kızılağaç (Alnus glutinosa Gearth. subsp. barbata) ve Doğu Kayını (Fagus orientalis Lipsky) fidanlarının kısa dönem biyokütle değerleri. AÇÜOFD. 2018;19(1):1-7.
Creative Commons Lisansı
Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi Creative Commons Alıntı 4.0 Uluslararası Lisansı ile lisanslanmıştır.