Year 2019, Volume 20 , Issue 2, Pages 262 - 271 2019-09-15

Çinko ve bakır gideriminde bir biyokütle kaynağı olarak defne yapraklarının kullanılması ve modellenmesi
Modeling and utilization of laurel leaves as a biomass source for the removal of zinc and copper

Dilek Gumus [1] , Fatih Gumus [2]


Türkiye’de kereste dışı orman ürünlerinden olan tıbbi ve aromatik bitkiler sosyo-ekonomik açıdan bu yüzyılda önem kazanmaya başlamıştır. Bu çalışmada defne yapraklarından (LNL) hazırlanan bir biyokütle biyosorban olarak kullanılmıştır.  Biyosorbent dozajı, çözelti pH'sı, temas süresi, başlangıçtaki ağır metal iyonları konsantrasyonu, iyonik kuvvet, hümik asit etkisi ve LNL ile Bakır (II) ve çinko (II) 'nun biyosorpsiyonu üzerindeki rekabetçi etkiler incelenmiştir. Biyosorbent, FT-IR ve SEM görüntüleri kullanılarak karakterize edilmiştir. Doğrusallaştırılmış ve doğrusallaştırılmamış izoterm modelleri karşılaştırılmış ve tartışılmıştır. Zn (II) ve Cu (II) biyosorpsiyonu, Temkin denklemiyle daha iyi uyum sağlamış ve sahte ikinci derece reaksiyon kinetiği, her iki ağır metalin biyosorpsiyon davranışlarıyla da uyum göstermistir. Ayrıca, ağır metal biyosorpsiyonu için doğrusal olmayan en uygun izoterm denklemine dayanan tek kademeli bir toplu biyoreaktör sistemi de sunulmuştur. Ağır metal giderimini ortamdaki diğer iyonların varlığı bir miktar etkilemiştir. Bu çalışmalar LNL'nin çinko ve bakır iyonlarını kirli sulardan uzaklaştırmak için, ucuz ve bol bulunan bir biyosorban olarak, değerlendirilebileceğini göstermiştir.

One of the most important non-timber forest products in Turkey, medicinal and aromatic plants, especially in the last century have become important socio-economic values. The biosorbent used in this study was prepared from Laurus nobilis L. leaves (LNL). The effects of biosorbent dosage, biosorption time, solution pH, initial zinc and copper ions concentration, humic acid or ionic strength or competitive effects on the biosorption of copper and zinc by LNL were investigated. The LNL biomass was characterized using SEM and FT-IR spectrum. The linearized and non-linearized isotherm models were compared and discussed. Zn(II) and Cu(II) biosorption fitted better in the Temkin equation and Pseudo second-order kinetic model successfully described the biomass behaviors of both heavy metals. Additionally, a single-stage batch bioreactor system for heavy metal biosorption based on the best fit non-linear isotherm equation also has been presented. It was found that heavy metal removal efficiencies were affected by competitive biosorption studies. Finally, these studies showed that the LNL can be used as an inexpensive and abundant biosorbent for removing zinc and copper ions from contaminated waters. 

  • Araújo, C. S., Almeida, I. L., Rezende, H. C., Marcionilio, S. M., Léon, J. J., & de Matos, T. N. 2018. Elucidation of mechanism involved in adsorption of Pb (II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchemical Journal, 137, 348-354.
  • Bayo, J., Esteban, G. & Castillo, J. 2012. The use of native and protonated grapefruit biomass (Citrus paradisi L.) for cadmium (II) biosorption: equilibrium and kinetic modelling, Environmental technology, 33(7), 761-772.
  • Bayram, E., Kırıcı, S., Tansı, S., Yılmaz, G., Arabacı, O., Kızıl, S., & Telci, İ. (2010). Tıbbi Bitkilerin Üretiminin Arttırılması Olanakları. VII. Türkiye Ziraat Mühendisliği Teknik Kongresi Bildiriler Kitabı-1, 453-484.
  • Choi, J.W., Chung, S.G., Hong, S.W., Kim, D.J., Lee, S.H. 2012. Development of an environmentally friendly adsorbent for the removal of toxic heavy metals from aqueous solution, Water Air Soil Pollut. 223: 1837–1846. doi: 10.1007/s11270-011-0988-1.
  • Choudhary, B. & Paul, D. 2018. Isotherms, kinetics and thermodynamics of hexavalent chromium removal using biochar, Journal of Environmental Chemical Engineering, 6(2), 2335-2343.
  • Dawood, S. & Sen, T. K. (2012) Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design. Water research, 46(6), 1933-1946. https://doi.org/10.1016/j.watres.2012.01.009
  • Gümüş, D. 2018. Biosorptive application of defatted Laurus nobilis leaves as a waste material for treatment of water contaminated with heavy metal, International journal of phytoremediation, 1-8.
  • Gümüş D, & Akbal F. 2017. A comparative study of ozonation, iron coated zeolite catalyzed ozonation and granular activated carbon catalyzed ozonation of humic acid. Chemosphere, 174, 218-231.
  • Hafshejani, L. D., Nasab, S. B., Gholami, R. M., Moradzadeh, M., Izadpanah, Z., Hafshejani, S. B., & Bhatnagar, A. 2015. Removal of zinc and lead from aqueous solution by nanostructured cedar leaf ash as biosorbent. Journal of molecular liquids, 211, 448-456.
  • Ho, Y.S. Review of second-order models for adsorption systems. 2006. Journal of Hazardous Materials, 136, 681–689.
  • Hussin, Talib Z. M., Hussin, Hanafiah N.M, M. A. & Khalir, W. K. 2015. Methylene blue adsorption onto NaOH modified durian leaf powder: isotherm and kinetic studies. American Journal of Environmental Engineering, 5(3A), 38-43.
  • Jaman, H.. Chakraborty, D., & Saha P. 2009. A study of the thermodynamics and kinetics of copper adsorption using chemically modified rice husk. CLEAN–Soil, Air, Water. 37(9): 704-711. doi: 10.1002/clen.200900138
  • Kamari, A., Yusof, S.N., Abdullah, F. & Putra, W.P. 2014. Biosorptive removal of Cu (II), Ni (II) and Pb (II) ions from aqueous solutions using coconut dregs residue: Adsorption and characterization studies. J.Environ. Chemical Eng. 2(4): 1912-1919. https://doi.org/10.1016/j.jece.2014.08.014
  • Kumar, S., Singh, J. & Sharma A. Bay leaves. 2004. In: Handbook of herbs and spices, (Ed.): K.V. Peter. Woodhead Publishing Limited, Cambridge, England.
  • Lagergren, S. 1898. Zur theorie der sogenannten adsorption gelöster stoffe, K. Sven, Vetenskapsakad. Handl. 24. 1–39.
  • Laskar, M. A, Ali, S. K. & Siddiqui, S. 2016. A potential bio-sorbent for heavy metals in the remediation of waste water. Journal of Sustainable Development of Energy, Water and Environment Systems, 4(4), 320-332. https://doi.org/10.13044/j.sdewes.2016.04.0025
  • Liu, C., Bai, R. & San Ly, Q. 2008. Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: behaviors and mechanisms, Water Research, 42(6-7), 1511-1522.
  • Matouq, M., Jildeh N., Qtaishat, M., Hindiyeh, M. & Al Syouf, M.Q. 2015. The adsorption kinetics and modeling for heavy metals removal from wastewater by Moringa pods. J. Environ. Chemical Eng. 3(2): 775-784. doi: 10.1016/j.jece.2015.03.027
  • Mishra, P.C. & Patel, R.K.2009. Removal of lead and zinc ions from water by low cost adsorbents, Journal of Hazardous Materials, 168(1), 319-325.
  • Morosanu, I. Teodosiu, C. Paduraru, C. Ibanescu, D. & Tofan L. 2017. Biosorption of lead ions from aqueous effluents by rapeseed biomass, New biotechnology, 3: 110-124.
  • Ngah, W. W. & Hanafiah, M.A. K.M. 2008. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review, Bioresource technology, 99(10), 3935-3948.
  • Obike, A.I, Igwe, J. C, Emeruwa, C. N. & Uwakwe, K. J. 2018. Equilibrium and kinetic studies of Cu (II), Cd (II), Pb (II) and Fe (II) adsorption from aqueous solution using cocoa (Theobroma cacao) pod husk, Journal of Applied Science and Environmental Management, 22(2): 182-190.
  • Peixoto, L.R, Rosalen P.L., Ferreira, G. L.S., Freires I.A., de Carvalho, F.G., Castellano, L.R. & de Castro R.D. 2017. Antifungal activity, mode of action and anti-biofilm effects of Laurus nobilis Linnaeus essential oil against Candida spp. Archives of Oral Biology. 73: 179-185.
  • Rao, K.S., Mohapatra, M., Anand, S. & Venkateswarlu, P. 2010. Review on cadmium removal from aqueous solutions. International Journal of Engineering Science and Technology 2(7).
  • Reddy, D,D., Ghosh, R.K., Bindu, J.P., Mahadevaswamy, M. & Murthy, T.G.K. (2017) Removal of methylene blue from aqueous system using tobacco stems biomass: Kinetics, mechanism and single stage adsorber design. Environmental Progress & Sustainable Energy, 36(4), 1005-1012. https://doi.org/10.1002/ep.12542
  • Sahmoune, M.N. 2018. Performance of Streptomyces rimosus biomass in biosorption of heavy metals from aqueous solutions. Microchemical Journal.
  • Semerci, A., & Çelik, A. D. (2017). Defne Bitkisinin Hatay İli Ekonomisindeki Yeri ve Önemi. SDÜ Ziraat Fakültesi Dergisi, 12(2), 125-134.
  • Saraeian, A., Hadio, A., Raji, F., Ghassemi, A. & Johnson, M. 2018. Cadmium removal from aqueous solution by low-cost native and surface modified Sorghum x drummondii (Sudangrass), Journal of Environmental Chemical Engineering, 6(2), 3322-3331.
  • Shukla, S.R., Pai, RS. 2005. Adsorption of Cu(II), Ni(II) and Zn(II) on dye loadedgroundnut shells and sawdust, Sep. Purif. Technol. 43: 1–8. doi: 10.1016/j.seppur.2004.09.003
  • Tang, W.W., Zeng, G.M., Gong, J.L., Liang, J., Xu, P., Zhang, C., Huang, B.B. 2014. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review, Science of Total Environment, 468–469, 1014–1027.
  • Xiong, C. & Yao, C. 2009. Synthesis, characterization and application of triethylenetetramine modified polystyrene resin in removal of mercury, cadmium and lead from aqueous solutions. Chemical Engineering Journal, 155(3), 844-850.
  • Yan, C., Li, G., Xue, P., Wei, Q.. & Li, Q. 2010. Competitive effect of Cu (II) and Zn (II) on the biosorption of lead (II) by Myriophyllum spicatum, Journal of Hazardous Materials 179(1-3), 721-728.
  • Yargıç, A. Ş., Şahin, R. Y., Özbay, N. & Önal, E. 2015. Assessment of toxic copper (II) biosorption from aqueous solution by chemically-treated tomato waste. Journal of Cleaner Production, 88, 152-159.
  • Yasin, S. A & Qasim, A. K. 2018. Kinetic Study of Adsorption of Hexavalent Chromium in Aqueous Solution using Bay Leaf (Laurus Nobilis) as New Bio-Adsorbent. Science Journal of University of Zakho, 6(3), 104-107. https://doi.org/10.25271/sjuoz.2018.6.3.513
Primary Language en
Subjects Environmental Sciences
Published Date Eylül
Journal Section Research Article
Authors

Orcid: 0000-0001-7665-3057
Author: Dilek Gumus (Primary Author)
Institution: Sinop Üniversitesi
Country: Turkey


Orcid: 0000-0002-4660-7591
Author: Fatih Gumus
Institution: Sinop Üniversitesi
Country: Turkey


Supporting Institution Sinop Üniversitesi
Project Number RBB -1901-16-28
Dates

Publication Date : September 15, 2019

Bibtex @research article { artvinofd580648, journal = {Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi}, issn = {2146-1880}, eissn = {2146-698X}, address = {}, publisher = {Artvin Çoruh University}, year = {2019}, volume = {20}, pages = {262 - 271}, doi = {10.17474/artvinofd.580648}, title = {Modeling and utilization of laurel leaves as a biomass source for the removal of zinc and copper}, key = {cite}, author = {Gumus, Dilek and Gumus, Fatih} }
APA Gumus, D , Gumus, F . (2019). Modeling and utilization of laurel leaves as a biomass source for the removal of zinc and copper. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi , 20 (2) , 262-271 . DOI: 10.17474/artvinofd.580648
MLA Gumus, D , Gumus, F . "Modeling and utilization of laurel leaves as a biomass source for the removal of zinc and copper". Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 20 (2019 ): 262-271 <http://ofd.artvin.edu.tr/en/issue/45267/580648>
Chicago Gumus, D , Gumus, F . "Modeling and utilization of laurel leaves as a biomass source for the removal of zinc and copper". Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 20 (2019 ): 262-271
RIS TY - JOUR T1 - Modeling and utilization of laurel leaves as a biomass source for the removal of zinc and copper AU - Dilek Gumus , Fatih Gumus Y1 - 2019 PY - 2019 N1 - doi: 10.17474/artvinofd.580648 DO - 10.17474/artvinofd.580648 T2 - Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi JF - Journal JO - JOR SP - 262 EP - 271 VL - 20 IS - 2 SN - 2146-1880-2146-698X M3 - doi: 10.17474/artvinofd.580648 UR - https://doi.org/10.17474/artvinofd.580648 Y2 - 2019 ER -
EndNote %0 Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi Modeling and utilization of laurel leaves as a biomass source for the removal of zinc and copper %A Dilek Gumus , Fatih Gumus %T Modeling and utilization of laurel leaves as a biomass source for the removal of zinc and copper %D 2019 %J Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi %P 2146-1880-2146-698X %V 20 %N 2 %R doi: 10.17474/artvinofd.580648 %U 10.17474/artvinofd.580648
ISNAD Gumus, Dilek , Gumus, Fatih . "Modeling and utilization of laurel leaves as a biomass source for the removal of zinc and copper". Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 20 / 2 (September 2019): 262-271 . https://doi.org/10.17474/artvinofd.580648
AMA Gumus D , Gumus F . Modeling and utilization of laurel leaves as a biomass source for the removal of zinc and copper. AÇÜOFD. 2019; 20(2): 262-271.
Vancouver Gumus D , Gumus F . Modeling and utilization of laurel leaves as a biomass source for the removal of zinc and copper. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi. 2019; 20(2): 271-262.