Research Article
BibTex RIS Cite

Examining the breaking and bending behaviors of the polymethylmethacrylate composites reinforced with hazelnut shell powder

Year 2019, Volume: 20 Issue: 2, 164 - 171, 15.09.2019
https://doi.org/10.17474/artvinofd.532204

Abstract

The objective of the present study is to reveal the toughening effect of the hazelnut shell on the brittle matrices by using the bending and breaking methods. The polymethylmethacrylate composites reinforced with hazelnut shell powder with 50µ particle size at the weight concentrations of 5%, 10%, 15%, and 20% were prepared. The polymer beam samples were exposed to heat cure procedure and the initial notches were created at a/W=0.1, 0.2, 0.3, 0.4, and 0.5. The Mode I breaking behaviors of the notched at single edge and non-notched composite samples were examined by using three-point bending test. The critical stress intensity factor (KIC), J-integral, initial notch depth, and compliance methods were used in calculations. Besides them, the bending module and bending stress values were calculated. The microstructures of HNSP/PMMA composites were determined by using XRD (x-ray diffractometer), FTIR (Fouirer Transform Infrared Spektrofotometre), and SEM (scanning electron microscope) analyses. According to the results obtained, it was determined that the bending strength, elasticity module, and fracture toughness values increased at 10% additive ratio for the HNSP (hasel nut shell flour)/PMMA (polymethylmethacrylate) composites.

References

  • Açikalin K, (2010) Çeşitli biyokütle atık maddelerin pirolizi ve elde edilen ürünlerin analizi. PhD Thesis. YTÜ Fen Bilimleri Enstitüsü.
  • Anderson TL, (2005) Fracture mechanics: fundamentals and applications. CRC press.
  • Arikan H, Avci A, Akdemir A, (2004) Fracture behaviour of steel fibre reinforced polymer composite. Polymer testing, 23 (6): 615-619. doi: 10.1016/j.polymertesting.2004.02.002
  • Asadi1 M, Bazyar B, Hemmasi, AH, Ghsemi İ, Talaeipoor M, (2018) Assessment of Mechanical and Morphological Properties of New Poly Lactic Acid (PLA) / Wood Fibers / Nanographene Composite, Drvna Industrıja. 69 (2): 127-134. doi:10.5552/drind.2018.1735
  • Atkins AG, Mai YW, (1988) Elastic and plastic fracture. Chichester, UK, Ellis Horwood/John Wiley.
  • Ayfer M. (1986) Turkish Hazelnut Types. Ankara
  • Balart JF, Fombuena V, Fenolla O, Boronat T, Sánchez-Nacher L, (2016)Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Composites Part B: Engineering, (86):168-177.10.1016/j.compositesb.2015.09.063
  • Bhaskar j, Haq S, Yadaw SB, (2011) Evaluation and testing of mechanical properties of wood plastic composite, Journal of Thermoplastic Composite Materials, 25(4):391–401. doı: 10.1177/0892705711406158
  • Bledzki AK, Mamun AA, Volk J, (2010) Physical, chemical and surface properties of wheat husk, rye husk and soft wood and their polypropylene composites. Composites Part A: Applied Science and Manufacturing, 41 (4): 480-488. doi:10.1016/j.compositesa.2009.12.004
  • Cherepanov GP, (1967) The propagation of cracks in a continuous medium. J.Appl.Math.Mech, 31(3):503-512.
  • Creela JA, Stovera SM, Martina RB, Fyhriea DP, Hazelwooda SJ, Gibelinga JC, (2009) Compliance calibration for fracture testing of anisotropic biological materials, journal of the mechanical behavior of biomedical materials, 2 571-578. doi:10.1016/j.jmbbm.2008.11.005
  • Davalos JF, Qiao P, Madabhusi, RP, Lang EM, (1998)Mode I fracture toughness of fiber reinforced composite-wood bonded interface. Journal of Composite materials, 32(10): 987-1013. https://doi.org/10.1177/002199839803201005doi: 10.1177/0021998312467387 Gassan J, Bledzki AK, (1997) The influence of fiber-surface treatment on the mechanical properties of jute-polypropylene composites. Composites Part A: Applied Science and Manufacturing, 28(12): 1001-1005. https://doi.org/10.1016/S1359-835X(97)00042-0
  • George M, White CV, Wolfgang W, (2007) Introduction to Engineering Materials, Second edition, CRC pres, pp.239. Giresun Commodity Exchange Data, 2009. Guo W, Bao F, Wang Z, (2013) Biodegradability of wood fiber/poly (lactic acid) composites. Journal of Composite Materials, 47 (28): 3573-3580.https://doi.org/10.1016/j.polymertesting.2014.06.009
  • Kim BC, Park SW, Lee DG, (2008) Fracture toughness of the nano-particle reinforced epoxy composite , Composite Structures, 86: 69–77. doi:10.1016/j.compstruct.2008.03.005 Kumar V, (2009) Pyrolysis and gasification of lignin and effect of alkali addition. PhD Thesis. Georgia Institute of Technology.
  • Luyt A, Malunka M, (2005) Composites of low-density polyethylene and short sisal fibres: the effect of wax addition and peroxide treatment on thermal properties. Thermochimica Acta 426(1):101-107. doi:10.1016/j.tca.2004.07.010 Marshall GP, Coutts LH, Wıllıams JG, (1974) Temperature effects in the fracture of Pmma, Journal of Materıals Scıence, 9, 1409-1419.
  • Mwaikambo LY, Ansell MP, (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. Journal of applied polymer science, 84(12): 2222-2234. https://doi.org/10.1002/app.10460 Özveren U, Bozdağ D, Şahin S, Özdoğan S, (2012)T G-MS ve FTIR Kullanılarak Fındık Kabuğunun Gazlaştırılmasının İncelenmesi, Onuncu Ulusal Kimya Mühendisliği Kongresi, 3-6 September , Koç University, İstanbu.l
  • Roncero MB, Torres AL, Colom JF, Vidal T, (2005) The effect of xylanase on lignocellulosic components during the bleaching of wood pulps. Bioresource technology, 96 (1): 21-30. 10.1016/j.biortech.2004.03.003
  • Rong MZ, Zhang MQ, Luı Y, Yang GC, Zeng HM, (2001)The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Composites Science and technology, 61(10): 1437-1447.
  • Samanci A, (2012) Fracture behavior of woven steel fiber reinforced and sand particle filled polymer composites. Construction and Building Materials, 26 (1):167-171. https://doi.org/10.1016/j.conbuildmat.2011.06.006
  • Sims R., (2002) The brilliance of bioenergy: in business and in practice. Earthscan.
  • Sozen E, Aydemir D, Zor M, (2017) The Effects of Lignocellulosic Fillers on Mechanical, Morphological and Thermal Properties of Wood Polymer Composites, 68(3):195-204. doi:10.5552/drind.2017.1709
  • Sozen E, Zor M, Aydemir D, (2018) The Effect of Nano TiO2 and Nano Boron Nitride on Mechanical, Morphological and Thermal Properties of WF/PP Composites Drvna Industrıja, 69 (1): 13-22. doi:10.5552/drind.2018.1724
  • Španić N, Jambreković V, Alan Antonović A, (2010) Basic Materials for Manufacturing WoodPlastic Composites Drvna Industrıja 61 (4) 259-269 (2010),
  • Tada H, Paris PC, Irwin GR, (2000) The stres analysis of crack handbook. American Society of Mechanical Engineers. ISNB-13:978-0791801536
  • Underwood JH, Chait R, Smith CW, Wilhem DP, Andrews WR, Newman JC. (1986) Fracture Mechanics: Seventeenth Volume, ASTM International.
  • Vipulanandan C, Dharmarajan N, (1989) Fracture properties of particle filled polymer composites. Journal of composite materials, 23 (8):846-860. https://doi.org/10.1177/002199838902300805 Xiaofei Z, Zhi S, Xiaozhi H, (2014) Low temperature fracture toughness of PMMA and crack-tipconditions under flat-tipped cylindrical indenter,Polymer Testing, 38: 57-63
  • Zarges JC, Minkley D, Feldmann M, Heim HP (2017) Fracture toughness of injection molded, man-made cellulose fiber reinforced polypropylene, Composites: Part A 98 147–158. https://doi.org/10.1016/j.compositesa.2017.03.022
  • Zor M, Tankut N, Kiziltas A, Gardner DJ, Yazici H, (2016) Feasibility of Using Foamed Styrene Maleic Anhydride (SMA) Co-polymer in Wood Based Composites. Drvna Industrıja, 67 (4):399-407. doi:10.5552/drind.2016.1624

Fındıkkabuğu tozu takviyeli/polimetilmetakrilat kompozitlerin kırılma ve eğilme davranışlarının incelenmesi

Year 2019, Volume: 20 Issue: 2, 164 - 171, 15.09.2019
https://doi.org/10.17474/artvinofd.532204

Abstract

Çalışmanın amacı, gevrek matrislerde fındıkkabuğunun toklaştırma etkisini eğilme ve farklı kırılma yöntemleri ile ortaya koymaktır. 50µ partikül boyutuna sahip %5, %10, %15 ve %20 ağırlık oranlarında fındıkkabuğu tozu takviyeli /Polimetilmetakrilat kompozitler üretildi. Üretilen polimer kiriş numunelere, ısıl kür işleminden sonra, a/W= 0,1, 02, 03, 04, 0,5 başlangıç çentikleri açıldı. Çentiksiz ve tek kenardan çentik açılmış kompozit numunelerin mode I kırılma davranışları üç nokta eğme testi uygulanarak ortaya konuldu. Kritik Gerilme Şiddet Faktörü (KIC) J- integral, Başlangıç Çentik Derinliği ve Komplians metotları ile hesaplandı.  Bununla birlikte eğilme modülü ve eğilme gerilmeleri de belirlendi. HNSF/ PMMA kompozitlerin mikro yapısı XRD, FTIR ve SEM çalışmaları ile ortaya konuldu. Çalışmanın sonuçlarına göre, fındıkkabuğu tozu / Pmma kompozitlere eklenen tozların %10 katkı oranında eğilme kuvveti, eğilme modülü ve kırılma tokluğunu arttırdığı belirlenmiştir.

References

  • Açikalin K, (2010) Çeşitli biyokütle atık maddelerin pirolizi ve elde edilen ürünlerin analizi. PhD Thesis. YTÜ Fen Bilimleri Enstitüsü.
  • Anderson TL, (2005) Fracture mechanics: fundamentals and applications. CRC press.
  • Arikan H, Avci A, Akdemir A, (2004) Fracture behaviour of steel fibre reinforced polymer composite. Polymer testing, 23 (6): 615-619. doi: 10.1016/j.polymertesting.2004.02.002
  • Asadi1 M, Bazyar B, Hemmasi, AH, Ghsemi İ, Talaeipoor M, (2018) Assessment of Mechanical and Morphological Properties of New Poly Lactic Acid (PLA) / Wood Fibers / Nanographene Composite, Drvna Industrıja. 69 (2): 127-134. doi:10.5552/drind.2018.1735
  • Atkins AG, Mai YW, (1988) Elastic and plastic fracture. Chichester, UK, Ellis Horwood/John Wiley.
  • Ayfer M. (1986) Turkish Hazelnut Types. Ankara
  • Balart JF, Fombuena V, Fenolla O, Boronat T, Sánchez-Nacher L, (2016)Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Composites Part B: Engineering, (86):168-177.10.1016/j.compositesb.2015.09.063
  • Bhaskar j, Haq S, Yadaw SB, (2011) Evaluation and testing of mechanical properties of wood plastic composite, Journal of Thermoplastic Composite Materials, 25(4):391–401. doı: 10.1177/0892705711406158
  • Bledzki AK, Mamun AA, Volk J, (2010) Physical, chemical and surface properties of wheat husk, rye husk and soft wood and their polypropylene composites. Composites Part A: Applied Science and Manufacturing, 41 (4): 480-488. doi:10.1016/j.compositesa.2009.12.004
  • Cherepanov GP, (1967) The propagation of cracks in a continuous medium. J.Appl.Math.Mech, 31(3):503-512.
  • Creela JA, Stovera SM, Martina RB, Fyhriea DP, Hazelwooda SJ, Gibelinga JC, (2009) Compliance calibration for fracture testing of anisotropic biological materials, journal of the mechanical behavior of biomedical materials, 2 571-578. doi:10.1016/j.jmbbm.2008.11.005
  • Davalos JF, Qiao P, Madabhusi, RP, Lang EM, (1998)Mode I fracture toughness of fiber reinforced composite-wood bonded interface. Journal of Composite materials, 32(10): 987-1013. https://doi.org/10.1177/002199839803201005doi: 10.1177/0021998312467387 Gassan J, Bledzki AK, (1997) The influence of fiber-surface treatment on the mechanical properties of jute-polypropylene composites. Composites Part A: Applied Science and Manufacturing, 28(12): 1001-1005. https://doi.org/10.1016/S1359-835X(97)00042-0
  • George M, White CV, Wolfgang W, (2007) Introduction to Engineering Materials, Second edition, CRC pres, pp.239. Giresun Commodity Exchange Data, 2009. Guo W, Bao F, Wang Z, (2013) Biodegradability of wood fiber/poly (lactic acid) composites. Journal of Composite Materials, 47 (28): 3573-3580.https://doi.org/10.1016/j.polymertesting.2014.06.009
  • Kim BC, Park SW, Lee DG, (2008) Fracture toughness of the nano-particle reinforced epoxy composite , Composite Structures, 86: 69–77. doi:10.1016/j.compstruct.2008.03.005 Kumar V, (2009) Pyrolysis and gasification of lignin and effect of alkali addition. PhD Thesis. Georgia Institute of Technology.
  • Luyt A, Malunka M, (2005) Composites of low-density polyethylene and short sisal fibres: the effect of wax addition and peroxide treatment on thermal properties. Thermochimica Acta 426(1):101-107. doi:10.1016/j.tca.2004.07.010 Marshall GP, Coutts LH, Wıllıams JG, (1974) Temperature effects in the fracture of Pmma, Journal of Materıals Scıence, 9, 1409-1419.
  • Mwaikambo LY, Ansell MP, (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. Journal of applied polymer science, 84(12): 2222-2234. https://doi.org/10.1002/app.10460 Özveren U, Bozdağ D, Şahin S, Özdoğan S, (2012)T G-MS ve FTIR Kullanılarak Fındık Kabuğunun Gazlaştırılmasının İncelenmesi, Onuncu Ulusal Kimya Mühendisliği Kongresi, 3-6 September , Koç University, İstanbu.l
  • Roncero MB, Torres AL, Colom JF, Vidal T, (2005) The effect of xylanase on lignocellulosic components during the bleaching of wood pulps. Bioresource technology, 96 (1): 21-30. 10.1016/j.biortech.2004.03.003
  • Rong MZ, Zhang MQ, Luı Y, Yang GC, Zeng HM, (2001)The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Composites Science and technology, 61(10): 1437-1447.
  • Samanci A, (2012) Fracture behavior of woven steel fiber reinforced and sand particle filled polymer composites. Construction and Building Materials, 26 (1):167-171. https://doi.org/10.1016/j.conbuildmat.2011.06.006
  • Sims R., (2002) The brilliance of bioenergy: in business and in practice. Earthscan.
  • Sozen E, Aydemir D, Zor M, (2017) The Effects of Lignocellulosic Fillers on Mechanical, Morphological and Thermal Properties of Wood Polymer Composites, 68(3):195-204. doi:10.5552/drind.2017.1709
  • Sozen E, Zor M, Aydemir D, (2018) The Effect of Nano TiO2 and Nano Boron Nitride on Mechanical, Morphological and Thermal Properties of WF/PP Composites Drvna Industrıja, 69 (1): 13-22. doi:10.5552/drind.2018.1724
  • Španić N, Jambreković V, Alan Antonović A, (2010) Basic Materials for Manufacturing WoodPlastic Composites Drvna Industrıja 61 (4) 259-269 (2010),
  • Tada H, Paris PC, Irwin GR, (2000) The stres analysis of crack handbook. American Society of Mechanical Engineers. ISNB-13:978-0791801536
  • Underwood JH, Chait R, Smith CW, Wilhem DP, Andrews WR, Newman JC. (1986) Fracture Mechanics: Seventeenth Volume, ASTM International.
  • Vipulanandan C, Dharmarajan N, (1989) Fracture properties of particle filled polymer composites. Journal of composite materials, 23 (8):846-860. https://doi.org/10.1177/002199838902300805 Xiaofei Z, Zhi S, Xiaozhi H, (2014) Low temperature fracture toughness of PMMA and crack-tipconditions under flat-tipped cylindrical indenter,Polymer Testing, 38: 57-63
  • Zarges JC, Minkley D, Feldmann M, Heim HP (2017) Fracture toughness of injection molded, man-made cellulose fiber reinforced polypropylene, Composites: Part A 98 147–158. https://doi.org/10.1016/j.compositesa.2017.03.022
  • Zor M, Tankut N, Kiziltas A, Gardner DJ, Yazici H, (2016) Feasibility of Using Foamed Styrene Maleic Anhydride (SMA) Co-polymer in Wood Based Composites. Drvna Industrıja, 67 (4):399-407. doi:10.5552/drind.2016.1624
There are 28 citations in total.

Details

Primary Language English
Subjects Forest Industry Engineering
Journal Section Research Article
Authors

Kenan Büyükkaya 0000-0002-8263-0756

Publication Date September 15, 2019
Acceptance Date June 17, 2019
Published in Issue Year 2019Volume: 20 Issue: 2

Cite

APA Büyükkaya, K. (2019). Examining the breaking and bending behaviors of the polymethylmethacrylate composites reinforced with hazelnut shell powder. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 20(2), 164-171. https://doi.org/10.17474/artvinofd.532204
AMA Büyükkaya K. Examining the breaking and bending behaviors of the polymethylmethacrylate composites reinforced with hazelnut shell powder. ACUJFF. September 2019;20(2):164-171. doi:10.17474/artvinofd.532204
Chicago Büyükkaya, Kenan. “Examining the Breaking and Bending Behaviors of the Polymethylmethacrylate Composites Reinforced With Hazelnut Shell Powder”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 20, no. 2 (September 2019): 164-71. https://doi.org/10.17474/artvinofd.532204.
EndNote Büyükkaya K (September 1, 2019) Examining the breaking and bending behaviors of the polymethylmethacrylate composites reinforced with hazelnut shell powder. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 20 2 164–171.
IEEE K. Büyükkaya, “Examining the breaking and bending behaviors of the polymethylmethacrylate composites reinforced with hazelnut shell powder”, ACUJFF, vol. 20, no. 2, pp. 164–171, 2019, doi: 10.17474/artvinofd.532204.
ISNAD Büyükkaya, Kenan. “Examining the Breaking and Bending Behaviors of the Polymethylmethacrylate Composites Reinforced With Hazelnut Shell Powder”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 20/2 (September 2019), 164-171. https://doi.org/10.17474/artvinofd.532204.
JAMA Büyükkaya K. Examining the breaking and bending behaviors of the polymethylmethacrylate composites reinforced with hazelnut shell powder. ACUJFF. 2019;20:164–171.
MLA Büyükkaya, Kenan. “Examining the Breaking and Bending Behaviors of the Polymethylmethacrylate Composites Reinforced With Hazelnut Shell Powder”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, vol. 20, no. 2, 2019, pp. 164-71, doi:10.17474/artvinofd.532204.
Vancouver Büyükkaya K. Examining the breaking and bending behaviors of the polymethylmethacrylate composites reinforced with hazelnut shell powder. ACUJFF. 2019;20(2):164-71.
Creative Commons License
Artvin Coruh University Journal of Forestry Faculty is licensed under a Creative Commons Attribution 4.0 International License.