Research Article
PDF BibTex RIS Cite

Mitotic effect of Iron oxide (Fe2O3) nanoparticle in Allium tuncelianum (Tunceli Garlic) root tip cells

Year 2023, Volume: 24 Issue: 2, 170 - 178, 15.10.2023
https://doi.org/10.17474/artvinofd.1283640

Abstract

With the rapid increase in the world population, industrial activities and unconscious consumption of natural resources cause environmental pollution. Materials obtained using nanoparticles are used in many fields. Devices used in the medical field, food production and packaging, electronics, energy production and cosmetics can be counted at the beginning of these fields. As a result of nano-industrial activities, it is thought that this NP will accumulate in soil, water, and air with the increase in the use of iron oxide nanoparticles (Fe2O3 NP). In this study, it was aimed to reveal the mitotic effect on root meristem cells of Allium tuncelianum (Kollmann) Özhatay, B.Mathew & Şiraneci (Tunceli garlic), which is an indicator organism and exposed to 20-40 nm Fe2O3 NP prepared at different doses (125, 250 and 500 ppm). Fe2O3 NPs, such as loss of genetic material, deconstructed prophase, adhesion, chromosome groupings in metaphase, deconstructed metaphase, deconstructed anaphase, fragment, polar deviation, bridge, going forward, asynchronous division, star anaphase, multipolarity, deconstructed telophase caused some mitotic abnormalities. All these results showed that Fe2O3 NP has genotoxic and clastogenic effects. Briefly, these results show that Fe2O3 NP taken by organisms may pose a danger to both the organism and the upper consumer. Again, these findings reveal that the controlled production and use of Fe2O3 NP’ s affecting organisms to reduce their bioaccumulation must ultimately be safely disposed of.

References

  • Ates M (2018) Nanoparçacıkların ölçme ve inceleme teknikleri. Turkish Journal of Scientific Reviews, 11(1):63–69.
  • Bakand S, Hayes, A, Dechsakulthorn F (2012) Nanoparticles: a review of particle toxicology following inhalation exposure. Inhalation Toxicology, 24(2):125-135.
  • Bonciu E, Firbas P, Fontanetti CS, Wusheng J, Karaismailoğlu MC, Liu D, Papini A (2018) An evaluation for the standardization of the Allium cepa test as cytotoxicity and genotoxicity assay. Caryologia, 71(3):191-209.
  • Colvın VL (2003) The potential environmental impact of engineered nanomaterials. Nature Biotechnology, 21:1166-1170.
  • Dagani R (2003) Nanomaterials: safe or unsafe? Chemical Engineering News, 81(17):30-33.
  • Elanchezhian R, Kumar D, Ramesh K, Bisvas AK, Guhey A, Patra AK (2017) Morpho-physiological and biochemical response of maize (Zea mays L.) plants fertilized with nano-iron (Fe3O4) micronutrient. Journal of Plant Nutrition, 40(14):1969–1977.
  • Gedik O, Kiran Y, Emre İ, Kurşat M (2016) Karyological notes for seven Salvia L. taxa grown in Turkey. Cytologia, 81(4):395–402.
  • Goujon E, Sta C, Trivella A, Goupil P, Richard C, Ledoigt G (2014) Genotoxicity of sulcotrione pesticide and photoproducts on Allium cepa root meristem. Pesticide Biochemistry and Physiology, 113:47–54.
  • Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small, 1:482-501.
  • Kaygisiz ŞY, Ciğerci İH (2017) Genotoxic evaluation of different sizes of iron oxide nanoparticles and ionic form by SMART, Allium and comet assay. Toxicology and Industrial Health, 33(10):802-809.
  • Kurşat M, Emre İ, Gedik O, Kiran Y (2018) Karyological reports for some Salvia taxa from Turkey. Caryologia, 71 (2):120-127.
  • Paul A, Nag S, Sinha K (2013) Cytological effects of blitox on root mitosis of Allium cepa. International Journals of Scientific Research Publications, 3(5):1-7.
  • Randy GM (1995) Fundamentals of Aquatic Toxicology: Effects, Environmental Fate and Risk Assessment. CRC Press.
  • Rice-Evans C, Miller N, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends in Plant Science, 2(4):152-159.
  • Saquib Q, Faisal M, Alatar AA, Al-Khedhairy AA, Ahmed M, Ansari SM, Ahmad J (2016) Genotoxicity of ferric oxide nanoparticles in Raphanus sativus: Deciphering the role of signaling factors, oxidative stress and cell death. Journal of Environmental Sciences, 47:49-62.
  • Seabra AB, Duran N (2015) Nanotoxicology of metal oxide nanoparticles. Metals, 5(2):934-975.
  • Singh D, Roy BK (2017) Evaluation of malathion-induced cytogenetical effects and oxidative stress in plants using Allium test. Acta Physiologiae Plantarum, 39(4):92.
  • Takım K (2015) Tunceli Dağ Sarımsağı'nın (Allium tuncelianum) in vitro antioksıdan kapasitesinin ölçülmesi, ratlarda antioksidan enzim aktiviteleri üzerine etkisi ve antikanser özelliğinin belirlenmesi. İnönü Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi, Malatya.
  • Tekin M, Gedik O, Kiran Y, Kurşat M (2016) karyological studies on six endemic plant taxa in Turkey. Cytologia, 81(4):363–370.
  • Tortella GR, Rubilar O, Duran N, Diez MC, Martinez M, Parada J, Seabra AB (2020) Silver nanoparticles: toxicity in model organisms as an overview of its hazard for human health and the environment. Journal of Hazardous Materials, 390:121974.
  • Yang W, Wang L, Mettenbrink EM, DeAngelis PL, Wilhelm S (2020) Nanoparticle toxicology. Annual Review of Pharmacology and Toxicology, 61.

Demir oksit (Fe2O3) nanopartikülünün Allium tuncelianum (Tunceli Sarımsağı) kök ucu hücrelerindeki mitotik etkisi

Year 2023, Volume: 24 Issue: 2, 170 - 178, 15.10.2023
https://doi.org/10.17474/artvinofd.1283640

Abstract

Dünya nüfusunun hızla artmasıyla birlikte ivme kazanan endüstriyel faaliyetler ve doğal kaynakların bilinçsiz tüketimi çevre kirliliğine sebep olmaktadır. Nanopartikül kullanılarak elde edilen malzemeler birçok alanda kullanılmaktadır. Tıp alanında kullanılan cihazlar, gıda üretimi ve paketlenmesi, elektronik, enerji üretimi ve kozmetik bu alanların başında sayılabilir. Nano-endüstriyel faaliyetler sonucunda demir oksit nanopartikülü (Fe2O3 NP) kullanımının artışıyla birlikte bu NP’ün toprakta, suda ve havada birikeceği düşünülmektedir. Bu çalışmada, değişik dozlarda hazırlanan (125, 250 ve 500 ppm) 20-40 nm Fe2O3 NP’ lüne maruz bırakılan ve indikatör bir organizma olan Allium tuncelianum (Kollmann) Özhatay, B.Mathew & Şiraneci (Tunceli sarımsağı) bitkisinin kök meristem hücrelerindeki mitotik etkisinin ortaya çıkarılması amaçlanmıştır. Fe2O3 NP’lü, genetik materyal kaybı, yapısı bozulmuş profaz, yapışıklık, metafazda kromozom gruplaşmaları, yapısı bozulmuş metafaz, yapısı bozulmuş anafaz, fragment, kutupsal sapma, köprü, ileri gitme, asenkron bölünme, star anafaz, multipolarite, yapısı bozulmuş telofaz gibi bazı mitotik anormalliklere sebep olmuştur. Bütün bu sonuçlar göstermiştir ki Fe2O3 NP’ lü genotoksik ve klastogenik etkiye sahiptir. Kısaca bu sonuçlar, Organizmalar tarafından alınan Fe2O3 NP’ lünün hem organizma hem de bir üst tüketici için tehlike oluşturabileceğini göstermektedir. Yine bu bulgular organizmaları etkileyen Fe2O3 NP’ lünün, biyobirikiminin azaltılması için kontrollü olarak üretilmesi ve kullanılmasının sonuçta da güvenli bir şekilde bertaraf edilmesi gerektiğini açığa çıkarmaktadır.

References

  • Ates M (2018) Nanoparçacıkların ölçme ve inceleme teknikleri. Turkish Journal of Scientific Reviews, 11(1):63–69.
  • Bakand S, Hayes, A, Dechsakulthorn F (2012) Nanoparticles: a review of particle toxicology following inhalation exposure. Inhalation Toxicology, 24(2):125-135.
  • Bonciu E, Firbas P, Fontanetti CS, Wusheng J, Karaismailoğlu MC, Liu D, Papini A (2018) An evaluation for the standardization of the Allium cepa test as cytotoxicity and genotoxicity assay. Caryologia, 71(3):191-209.
  • Colvın VL (2003) The potential environmental impact of engineered nanomaterials. Nature Biotechnology, 21:1166-1170.
  • Dagani R (2003) Nanomaterials: safe or unsafe? Chemical Engineering News, 81(17):30-33.
  • Elanchezhian R, Kumar D, Ramesh K, Bisvas AK, Guhey A, Patra AK (2017) Morpho-physiological and biochemical response of maize (Zea mays L.) plants fertilized with nano-iron (Fe3O4) micronutrient. Journal of Plant Nutrition, 40(14):1969–1977.
  • Gedik O, Kiran Y, Emre İ, Kurşat M (2016) Karyological notes for seven Salvia L. taxa grown in Turkey. Cytologia, 81(4):395–402.
  • Goujon E, Sta C, Trivella A, Goupil P, Richard C, Ledoigt G (2014) Genotoxicity of sulcotrione pesticide and photoproducts on Allium cepa root meristem. Pesticide Biochemistry and Physiology, 113:47–54.
  • Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small, 1:482-501.
  • Kaygisiz ŞY, Ciğerci İH (2017) Genotoxic evaluation of different sizes of iron oxide nanoparticles and ionic form by SMART, Allium and comet assay. Toxicology and Industrial Health, 33(10):802-809.
  • Kurşat M, Emre İ, Gedik O, Kiran Y (2018) Karyological reports for some Salvia taxa from Turkey. Caryologia, 71 (2):120-127.
  • Paul A, Nag S, Sinha K (2013) Cytological effects of blitox on root mitosis of Allium cepa. International Journals of Scientific Research Publications, 3(5):1-7.
  • Randy GM (1995) Fundamentals of Aquatic Toxicology: Effects, Environmental Fate and Risk Assessment. CRC Press.
  • Rice-Evans C, Miller N, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends in Plant Science, 2(4):152-159.
  • Saquib Q, Faisal M, Alatar AA, Al-Khedhairy AA, Ahmed M, Ansari SM, Ahmad J (2016) Genotoxicity of ferric oxide nanoparticles in Raphanus sativus: Deciphering the role of signaling factors, oxidative stress and cell death. Journal of Environmental Sciences, 47:49-62.
  • Seabra AB, Duran N (2015) Nanotoxicology of metal oxide nanoparticles. Metals, 5(2):934-975.
  • Singh D, Roy BK (2017) Evaluation of malathion-induced cytogenetical effects and oxidative stress in plants using Allium test. Acta Physiologiae Plantarum, 39(4):92.
  • Takım K (2015) Tunceli Dağ Sarımsağı'nın (Allium tuncelianum) in vitro antioksıdan kapasitesinin ölçülmesi, ratlarda antioksidan enzim aktiviteleri üzerine etkisi ve antikanser özelliğinin belirlenmesi. İnönü Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi, Malatya.
  • Tekin M, Gedik O, Kiran Y, Kurşat M (2016) karyological studies on six endemic plant taxa in Turkey. Cytologia, 81(4):363–370.
  • Tortella GR, Rubilar O, Duran N, Diez MC, Martinez M, Parada J, Seabra AB (2020) Silver nanoparticles: toxicity in model organisms as an overview of its hazard for human health and the environment. Journal of Hazardous Materials, 390:121974.
  • Yang W, Wang L, Mettenbrink EM, DeAngelis PL, Wilhelm S (2020) Nanoparticle toxicology. Annual Review of Pharmacology and Toxicology, 61.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section Research Article
Authors

Neslihan TAŞAR
munzur üniversitesi
0000-0002-0417-4660
Türkiye

Publication Date October 15, 2023
Acceptance Date September 9, 2023
Published in Issue Year 2023Volume: 24 Issue: 2

Cite

APA
TAŞAR, N. (2023). Demir oksit (Fe2O3) nanopartikülünün Allium tuncelianum (Tunceli Sarımsağı) kök ucu hücrelerindeki mitotik etkisi. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 24(2), 170-178. https://doi.org/10.17474/artvinofd.1283640
MLA
TAŞAR, Neslihan. “Demir Oksit (Fe2O3) nanopartikülünün Allium Tuncelianum (Tunceli Sarımsağı) kök Ucu hücrelerindeki Mitotik Etkisi”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, vol. 24, no. 2, 2023, pp. 170-8, doi:10.17474/artvinofd.1283640.
Chicago
TAŞAR, Neslihan. “Demir Oksit (Fe2O3) nanopartikülünün Allium Tuncelianum (Tunceli Sarımsağı) kök Ucu hücrelerindeki Mitotik Etkisi”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 24, no. 2 (October 2023): 170-78. https://doi.org/10.17474/artvinofd.1283640.
EndNote
TAŞAR N (October 1, 2023) Demir oksit (Fe2O3) nanopartikülünün Allium tuncelianum (Tunceli Sarımsağı) kök ucu hücrelerindeki mitotik etkisi. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 24 2 170–178.
ISNAD
TAŞAR, Neslihan. “Demir Oksit (Fe2O3) nanopartikülünün Allium Tuncelianum (Tunceli Sarımsağı) kök Ucu hücrelerindeki Mitotik Etkisi”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 24/2 (October 2023), 170-178. https://doi.org/10.17474/artvinofd.1283640.
AMA
TAŞAR N. Demir oksit (Fe2O3) nanopartikülünün Allium tuncelianum (Tunceli Sarımsağı) kök ucu hücrelerindeki mitotik etkisi. ACUJFF. October 2023;24(2):170-178. doi:10.17474/artvinofd.1283640
Vancouver
TAŞAR N. Demir oksit (Fe2O3) nanopartikülünün Allium tuncelianum (Tunceli Sarımsağı) kök ucu hücrelerindeki mitotik etkisi. ACUJFF. 2023;24(2):170-8.
IEEE
N. TAŞAR, “Demir oksit (Fe2O3) nanopartikülünün Allium tuncelianum (Tunceli Sarımsağı) kök ucu hücrelerindeki mitotik etkisi”, ACUJFF, vol. 24, no. 2, pp. 170–178, 2023, doi: 10.17474/artvinofd.1283640.
JAMA
TAŞAR N. Demir oksit (Fe2O3) nanopartikülünün Allium tuncelianum (Tunceli Sarımsağı) kök ucu hücrelerindeki mitotik etkisi. ACUJFF. 2023;24:170–178.
Creative Commons License
Artvin Coruh University Journal of Forestry Faculty is licensed under a Creative Commons Attribution 4.0 International License.