Research Article
BibTex RIS Cite

Laurus Nobilis L., Silybum Marianum L., Nigella Sativa L. ve Prunus Cerasus L.'den Soguk Pres Yöntemi İle İzole Edilen Esansiyel Yağ Bileşenlerinin Antimikrobial ve Antioksidan Aktiviteleri

Year 2020, Volume: 7 Issue: 2, 487 - 499, 24.04.2020
https://doi.org/10.30910/turkjans.725987

Abstract

Bu çalışmada, Laurus nobilis L., Silybum marianum L., Nigella sativa L. ve Prunus cerasus L.'in kimyasal bileşimleri, antimikrobiyal ve antioksidan özellikleri ve bunların ana bileşenleri belirlenmiştir. Yağların ve bileşenlerin antimikrobiyal aktivitesi, agar seyreltme ve difüzyon disk plakları metotları kullanılarak bir standart referans suşları paneline ve gıda kaynaklı ve patojenik bakteri suşlarının bir paneline karşı belirlenmiştir. Uçucu yağ numunelerinin antioksidan aktiviteleri, FRAP, DPPH• ve ABTS• + analizleri kullanılarak değerlendirildi. Uçucu yağ analizleri GC/MS ile yapılan L. nobilis S. marianum , N. sativa. ve P. cerasus 'in izole edilen uçucu yağ bileşenlerinde sırasıyla 65, 119, 46 ve 40 bileşen GC-MS ile analiz edildi. GC/MS analizi, yağların ana bileşenlerinin, monoterpen hidrokarbonlar ve fenolik monoterpenler olduğunu gösterdi, ancak bu bileşiklerin konsantrasyonu, incelenen yağlar arasında büyük ölçüde değişmiştir. FRAP ve ABTS testlerinin sonuçlarında, özellikle, soğuk pres yöntemiyle elde edilen defne tohumu yağ numunesi, önemli ölçüde daha yüksek antioksidan aktiviteye sahiptir. Sonuç olarak, sonuçlar L., nobilis S. marianum , N. sativa. ve P. cerasus’dan (soğuk pres) elde edilen yağların, veya bileşiklerin her biri nispeten güçlü antibakteriyal ve antifungal aktivite sergilemiştir. Bu nedenle, gıda endüstrisinde antimikrobiyal ve antioksidan maddeler olarak kullanım için uygun olabilirler. Gıda sistemlerindeki bileşenlerin bazıları gıda kaynaklı bakteri üremesini önleyebilir ve işlenmiş gıdaların raf ömrünü uzatabilir.

References

  • Al-Jassir, MS. 1992. Chemical Composition and Microflora of Black Cumin (Nigella sativa L.) Seeds Growing in Saudi Arabia. Food Chemistry, 45(4): 239-242.
  • Arkan, S. 2008. Karvakrol ve Timolün İzole Sıçan Kalp Kası Üzerine Etkileri. Yüksek Lisans Tezi, Osmangazi Üniversitesi Sağlık Bilimleri Enstitüsü, Kasım.
  • Balasundram, N., Sundram, K., Samman, S. 2006. Phenolic Compounds in Plants and Agri-Industrial By-Products: Antioxidant Activity, Occurrence, And Potential Uses. Food Chemistry, 99 (1): 191–203.
  • Baytop, T. 1984. Türkiye’de Bitkiler ile Tedavi. İ.Ü., Eczacılık Fakültesi Yayınları, No:40, İstanbul, 520s.
  • Ceylan, A. 1983. Tıbbi Bitkiler-II. Ege Üniversitesi Ziraat Fakültesi Yayını, No:481, Bornova-İzmir.
  • Chou, ST., Lai, CC., Lai, CP., Chao, WW. 2018. Chemical Composition, Antioxidant, Anti-Melanogenic and Antiinflammatory Activities of Glechoma hederacea (Lamiaceae) Essential Oil. Industrial Crops and Products, 122: 675–685.
  • Coccia, A., Carraturo, aç, Mosca, L., Masci, A., Bellini, A., Campagnaro, M., Lendaro, E. 2012. Effects of methanolic extract of sour cherry (Prunus cerasus L.) on microbial growth International Journal of Food Science and Technology, 47 (8): pp. 1620-1629.
  • Dadalioglu, I. ve Evrendilek, GA. 2004. Chemical Compositions and Antibacterial Effects of Essential Oils of Turkish Oregano (Origanum Minutiflorum), Bay Laurel (Laurus Nobilis), Spanish Lavender (Lavandula Stoechas L.), and Fennel (Foeniculum Vulgare) on Common Foodborne Pathogens. Journal of Agricultural and Food Chemsitry, 52(26): 8255–8260.
  • Damar, İ. ve Ekşi, A. 2012. Antioxidant Capacity And Anthocyanin Profile of Sour Cherry (Prunus cerasus L.) Juice. Food Chemistry, 135(4): 2910-2914.
  • Derwich, E., Benziane, Z., Boukir, A. 2009. Chemical Composition and Antibacterial Activity of Leaves Essential Oil of Laurus nobilis from Morocco. Australian Journal of Basic and Applied Sciences, 3(4): 3818–3824.
  • Dorman, HJD. ve Deans, SG. 2000. Antimicrobial Agents from Plants Antibacterial Activity of Plant Volatile Oils. Journal of Applied Microbiology, 88(2): 308-316.
  • Ehivet, FE., Min, B., Park, MK., Oh, JH. 2011. Characterization and Antimicrobial Activity of Sweet Potato Starch-Based Edible Film Containing Origanum (Thymus capitatus) Oil. Journal of Food Science, 76(1): C178-184.
  • El Hamdaoui, A., Msanda, F., Boubaker, H., Leach, D., Bombarda, I., Vanloot, P., El Aouad,N., Abbad, A., Boudyach, EH., Achemchem, F., Elmoslih, A., Ait Ben Aoumar, A., El Mousadik. A. 2018. Essential Oil Composition, Antioxidant And Antibacterial Activities of Wild and Cultivated Lavandula mairei Humbert, Biochemical Systematics and Ecology, 76:1-7.
  • El-Shazly, A., Dorai, G., Wink, M. 2002. Composition and Antimicrobial Activity of Essential Oil and Hexane-Ether Extract of Tanacetum santolinoides (dc.) Feinbr. and Fertig. Zeitschrift für Naturforschung C, Journal of Biosciences, 57(7-8): 620-623.
  • Habib, M., Ibrahim, HW., Schneider-Stock, R., Hassan, HM. 2013. Camel Milk Lactoferrin Reduces The Proliferation of Colorectal Cancer Cells and Exerts Antioxidant and DNA Damage Inhibitory Activities. Food Chemistry, 141(1): 148–152.
  • Helander, IM., Alakomi, HL., Latva-Kala, K., Mattila, ST., Pol, I., Smid, EJ., Gorris, LG.M., Wright VA.1998. Characterisation of The Action of Selected Essential Oil Components on Gram Negative Bacteria. Journal of Agricultural and Food Chemistry, 46(9): 3590–3595.
  • İlçim, A., Dığrak, M., Bağcı, E. 1998. Bazı Bitki Ekstraktlarının Antimikrobiyal Etkilerinin Araştırılması. Turkish Journal of Biology, 22:119-125.
  • Kıvrak, Ş. 2018. Essential Oil Composition and Antioxidant Activities of Eight Cultivars of Lavender and Lavandin from Western Anatolia. Industrial Crops and Products, 117: 88–96.
  • Kiralan, M., Özkan, G., Bayrak, A., Ramadan, MF. 2014. Physicochemical properties and stability of black cumin seed oil as affected by different extraction methods. Industrial Crops and Products, 57: 52-60.
  • Kołodziejczyk, K., Sojka, M., Abadias, M., Vinas, I., Guyot, S., Baron, A. 2013. Polyphenol Composition, Antioxidant Capacity, and Antimicrobial Activity of The Extracts Obtained from Industrial Sour Cherry Pomace. Industrial Crops and Products, 51: 279–288.
  • Lambert, RJW., Skandamis, PN., Coote, P., Nychas, GJE. 2001. A Study of The Minimum Inhibitory Concentration and Mode of Action of Oregano Essential Oil, Thymol and Carvacrol. Journal of Applied Microbiology, 91(3): 453-462.
  • Lutterodt, H., Luther, M., Slavin, M., Yin, JJ., Parry ,J., Gao, JM., Yu, LL. 2010. Fatty Acid Profile, Thymoquinone Content, Oxidative Stability and Antioxidant Properties of Cold-Pressed Black Cumin Seed Oils. LWT - Food Science and Technology, 43(9): 1409-1413.
  • Mitscher, LA., Drake, S., Gollapudi, SR., Okwute,SK.1987. A Modern Look at Folkloric Use of Anti-Infective Agents. Journal of Natural Products, 50(6): 1025–1040.
  • Motulsky H 2007. GraphPad Prism® Version 5.0 Statistics Guide. San Diego CA, GraphPad Software. www.graphpad.com.
  • Oyaizu, M. 1986. Studies on Products of Browning Reaction – Antioxidative Activities of Products of Browning Reaction Prepared from Glucosamine. Japanese Journal of Nutrition, 44(6): 307–315.
  • Özel, N., Akkaş, ME., Akbin, G., Altun,A., Akbin, NA., Öner, HH. 2008. Batı Anadolu'da Defne (Laurus nobilis L.) Yayılış Alanlarının Yetişme Ortamı Özelliklerinin Belirlenmesi. Çevre ve Orman Bakanlığı Ege Ormancılık Araştırma Müdürlüğü Teknik Bülten No:40, Bakanlık Yayın No: 329, Müdürlük Yayın No: 39, 4-73s, İzmir.
  • Polyak, SJ., Morishima, C., Shuhart, MC., Wang, CC., Liu, Y., Lee, DYW.2007. Inhibition of T-Cell Inflammatory Cytokines, Hepatocyte NF-KB Signaling, and HCV Infection by Standardized Silymarin (Milk thistle). Gastroenterology, 132(5): 1925-1936.
  • Rainone, F. 2005. Milk thistle. American Family Physician, Volume 72 (7):1285- 1288.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. 1999. Antioxidant Activity Applying An İmproved ABTS Radical Cation Decolorization Assay. Free Radical Biology & Medicine, 26 pp. 1231-1237.
  • Riu-Aumatell, M., Castellari, M., López-Tamames, Galassi, S., Buxadera, S. 2004. Characterization of Volatile Compounds of Fruit Juices and Nectars by HS/SPME and GC/MS. Food Chemistry, 87(4): 627-637.
  • Ronald, MA. 1990. Microbiologia, Compania Editorial Continental S.A. de C.V., Mexico DF. p. 505.
  • Sarikurkcu, C., Ozer, MS., Calli, N., Popovic´DJ. 2018. Essential Oil Composition and Antioxidant Activity of Endemic Marrubium parviflorum subsp. Oligodon. Industrial Crops and Products, 119: 209–213.
  • Sartoratto, A., Machado, A L M., Delarmelina, C., Figueira, G M., Duarte, MCT., Rehder. VLG.2004. Composition and Antimicrobial Activity of Essential Oils from Aromatic Plants Used in Brazil. Brazilian Journal of Microbiology, 35(4): 275-280.
  • Tim, CTP., Andrew, JL. 2005. Antimicrobial Activity of Flavonoids. International Journal of Antimicrobial Agents, 26: 343-356.
  • Vander Berghe, DA ve Vietinck, AJ. 1991. Screening Methods for Antibacterial and Antiviral Agents from Higger Plants. Methods in Plant Biochemistry. Academic Pres, London. (Ed) DEy, PM., Harborne, JB., chapter 3, p. 47-69.
  • Wagner H., Horhammer, L., Munster, R. 1968. On the Chemistry of Silymarin (Silybin), The Active Principle of The Fruits from Silybum marianum (L.) Gaertn. (Carduus marianus L.). Arzneimittelforschung, 18(6): 688-696.
  • Wallace, SN., Carrier, DJ., Clausen E. 2003. Extraction of Nutraceuticals from Milk Thistle: Part II. Extraction With Organic Solvents. Applied Biochemistry and Biotechnology, 108: 891–903.
  • Yuan, GF., Chen, XE., LI. D. 2016. Chitosan Films and Coatings Containing Essential Oils: The Antioxidant and Antimicrobial Activity, and Application in Food Systems. Food Research International, 89(1):117-128.

Antimicrobial and Antioxidant Activity of Essential Oil Components Isolated By Cold Press From Laurus nobilis L., Silybum marianum L., Nigella sativa L. and Prunus cerasus L.

Year 2020, Volume: 7 Issue: 2, 487 - 499, 24.04.2020
https://doi.org/10.30910/turkjans.725987

Abstract

In this work, the chemical composition, antimicrobial and antioxidant properties of Laurus nobilis L., Silybum marianum L., Nigella sativa L. and Prunus cerasus L. and their main components were determined. The antimicrobial activity of the oils and components was determined against a panel of standard reference strains and multiple strains of food-derived and pathogenic bacteria, using the agar dilution and diffusion disc plates methods. Essential oil analyzes were performed by GC/MS. Antioxidant activities of essential oil samples were evaluated using FRAP, DPPH• and ABTS•+ assays. The essential oils isolated from L.nobilis, S. marianum, N. sativa and P.cerasus were analysed by GC–MS that 65, 119, 46 and 40 constituents were identified, respectively. The GC/MS analysis showed that the major constituents of the oils were monoterpene hydrocarbons and phenolic monoterpenes, but the concentration of these compounds varied greatly among the oils examined. In the results of FRAP and ABTS assays, especially in the case of bay seed, oil samples obtained by cold press method have significantly higher antioxidant activity. In conclusion, the results indicate that the oils of obtained from L. nobilis, S.marianum, N. sativa and P. cerasus cold press or compounds exhibited relatively strong antibacterial and antifungal activity. Therefore, they could be suitable for using as antimicrobial and antioxidative agents in food industry. Some of components in food systems to may prevent the growth of foodborne bacteria and extend shelf-life of processed foods.

References

  • Al-Jassir, MS. 1992. Chemical Composition and Microflora of Black Cumin (Nigella sativa L.) Seeds Growing in Saudi Arabia. Food Chemistry, 45(4): 239-242.
  • Arkan, S. 2008. Karvakrol ve Timolün İzole Sıçan Kalp Kası Üzerine Etkileri. Yüksek Lisans Tezi, Osmangazi Üniversitesi Sağlık Bilimleri Enstitüsü, Kasım.
  • Balasundram, N., Sundram, K., Samman, S. 2006. Phenolic Compounds in Plants and Agri-Industrial By-Products: Antioxidant Activity, Occurrence, And Potential Uses. Food Chemistry, 99 (1): 191–203.
  • Baytop, T. 1984. Türkiye’de Bitkiler ile Tedavi. İ.Ü., Eczacılık Fakültesi Yayınları, No:40, İstanbul, 520s.
  • Ceylan, A. 1983. Tıbbi Bitkiler-II. Ege Üniversitesi Ziraat Fakültesi Yayını, No:481, Bornova-İzmir.
  • Chou, ST., Lai, CC., Lai, CP., Chao, WW. 2018. Chemical Composition, Antioxidant, Anti-Melanogenic and Antiinflammatory Activities of Glechoma hederacea (Lamiaceae) Essential Oil. Industrial Crops and Products, 122: 675–685.
  • Coccia, A., Carraturo, aç, Mosca, L., Masci, A., Bellini, A., Campagnaro, M., Lendaro, E. 2012. Effects of methanolic extract of sour cherry (Prunus cerasus L.) on microbial growth International Journal of Food Science and Technology, 47 (8): pp. 1620-1629.
  • Dadalioglu, I. ve Evrendilek, GA. 2004. Chemical Compositions and Antibacterial Effects of Essential Oils of Turkish Oregano (Origanum Minutiflorum), Bay Laurel (Laurus Nobilis), Spanish Lavender (Lavandula Stoechas L.), and Fennel (Foeniculum Vulgare) on Common Foodborne Pathogens. Journal of Agricultural and Food Chemsitry, 52(26): 8255–8260.
  • Damar, İ. ve Ekşi, A. 2012. Antioxidant Capacity And Anthocyanin Profile of Sour Cherry (Prunus cerasus L.) Juice. Food Chemistry, 135(4): 2910-2914.
  • Derwich, E., Benziane, Z., Boukir, A. 2009. Chemical Composition and Antibacterial Activity of Leaves Essential Oil of Laurus nobilis from Morocco. Australian Journal of Basic and Applied Sciences, 3(4): 3818–3824.
  • Dorman, HJD. ve Deans, SG. 2000. Antimicrobial Agents from Plants Antibacterial Activity of Plant Volatile Oils. Journal of Applied Microbiology, 88(2): 308-316.
  • Ehivet, FE., Min, B., Park, MK., Oh, JH. 2011. Characterization and Antimicrobial Activity of Sweet Potato Starch-Based Edible Film Containing Origanum (Thymus capitatus) Oil. Journal of Food Science, 76(1): C178-184.
  • El Hamdaoui, A., Msanda, F., Boubaker, H., Leach, D., Bombarda, I., Vanloot, P., El Aouad,N., Abbad, A., Boudyach, EH., Achemchem, F., Elmoslih, A., Ait Ben Aoumar, A., El Mousadik. A. 2018. Essential Oil Composition, Antioxidant And Antibacterial Activities of Wild and Cultivated Lavandula mairei Humbert, Biochemical Systematics and Ecology, 76:1-7.
  • El-Shazly, A., Dorai, G., Wink, M. 2002. Composition and Antimicrobial Activity of Essential Oil and Hexane-Ether Extract of Tanacetum santolinoides (dc.) Feinbr. and Fertig. Zeitschrift für Naturforschung C, Journal of Biosciences, 57(7-8): 620-623.
  • Habib, M., Ibrahim, HW., Schneider-Stock, R., Hassan, HM. 2013. Camel Milk Lactoferrin Reduces The Proliferation of Colorectal Cancer Cells and Exerts Antioxidant and DNA Damage Inhibitory Activities. Food Chemistry, 141(1): 148–152.
  • Helander, IM., Alakomi, HL., Latva-Kala, K., Mattila, ST., Pol, I., Smid, EJ., Gorris, LG.M., Wright VA.1998. Characterisation of The Action of Selected Essential Oil Components on Gram Negative Bacteria. Journal of Agricultural and Food Chemistry, 46(9): 3590–3595.
  • İlçim, A., Dığrak, M., Bağcı, E. 1998. Bazı Bitki Ekstraktlarının Antimikrobiyal Etkilerinin Araştırılması. Turkish Journal of Biology, 22:119-125.
  • Kıvrak, Ş. 2018. Essential Oil Composition and Antioxidant Activities of Eight Cultivars of Lavender and Lavandin from Western Anatolia. Industrial Crops and Products, 117: 88–96.
  • Kiralan, M., Özkan, G., Bayrak, A., Ramadan, MF. 2014. Physicochemical properties and stability of black cumin seed oil as affected by different extraction methods. Industrial Crops and Products, 57: 52-60.
  • Kołodziejczyk, K., Sojka, M., Abadias, M., Vinas, I., Guyot, S., Baron, A. 2013. Polyphenol Composition, Antioxidant Capacity, and Antimicrobial Activity of The Extracts Obtained from Industrial Sour Cherry Pomace. Industrial Crops and Products, 51: 279–288.
  • Lambert, RJW., Skandamis, PN., Coote, P., Nychas, GJE. 2001. A Study of The Minimum Inhibitory Concentration and Mode of Action of Oregano Essential Oil, Thymol and Carvacrol. Journal of Applied Microbiology, 91(3): 453-462.
  • Lutterodt, H., Luther, M., Slavin, M., Yin, JJ., Parry ,J., Gao, JM., Yu, LL. 2010. Fatty Acid Profile, Thymoquinone Content, Oxidative Stability and Antioxidant Properties of Cold-Pressed Black Cumin Seed Oils. LWT - Food Science and Technology, 43(9): 1409-1413.
  • Mitscher, LA., Drake, S., Gollapudi, SR., Okwute,SK.1987. A Modern Look at Folkloric Use of Anti-Infective Agents. Journal of Natural Products, 50(6): 1025–1040.
  • Motulsky H 2007. GraphPad Prism® Version 5.0 Statistics Guide. San Diego CA, GraphPad Software. www.graphpad.com.
  • Oyaizu, M. 1986. Studies on Products of Browning Reaction – Antioxidative Activities of Products of Browning Reaction Prepared from Glucosamine. Japanese Journal of Nutrition, 44(6): 307–315.
  • Özel, N., Akkaş, ME., Akbin, G., Altun,A., Akbin, NA., Öner, HH. 2008. Batı Anadolu'da Defne (Laurus nobilis L.) Yayılış Alanlarının Yetişme Ortamı Özelliklerinin Belirlenmesi. Çevre ve Orman Bakanlığı Ege Ormancılık Araştırma Müdürlüğü Teknik Bülten No:40, Bakanlık Yayın No: 329, Müdürlük Yayın No: 39, 4-73s, İzmir.
  • Polyak, SJ., Morishima, C., Shuhart, MC., Wang, CC., Liu, Y., Lee, DYW.2007. Inhibition of T-Cell Inflammatory Cytokines, Hepatocyte NF-KB Signaling, and HCV Infection by Standardized Silymarin (Milk thistle). Gastroenterology, 132(5): 1925-1936.
  • Rainone, F. 2005. Milk thistle. American Family Physician, Volume 72 (7):1285- 1288.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. 1999. Antioxidant Activity Applying An İmproved ABTS Radical Cation Decolorization Assay. Free Radical Biology & Medicine, 26 pp. 1231-1237.
  • Riu-Aumatell, M., Castellari, M., López-Tamames, Galassi, S., Buxadera, S. 2004. Characterization of Volatile Compounds of Fruit Juices and Nectars by HS/SPME and GC/MS. Food Chemistry, 87(4): 627-637.
  • Ronald, MA. 1990. Microbiologia, Compania Editorial Continental S.A. de C.V., Mexico DF. p. 505.
  • Sarikurkcu, C., Ozer, MS., Calli, N., Popovic´DJ. 2018. Essential Oil Composition and Antioxidant Activity of Endemic Marrubium parviflorum subsp. Oligodon. Industrial Crops and Products, 119: 209–213.
  • Sartoratto, A., Machado, A L M., Delarmelina, C., Figueira, G M., Duarte, MCT., Rehder. VLG.2004. Composition and Antimicrobial Activity of Essential Oils from Aromatic Plants Used in Brazil. Brazilian Journal of Microbiology, 35(4): 275-280.
  • Tim, CTP., Andrew, JL. 2005. Antimicrobial Activity of Flavonoids. International Journal of Antimicrobial Agents, 26: 343-356.
  • Vander Berghe, DA ve Vietinck, AJ. 1991. Screening Methods for Antibacterial and Antiviral Agents from Higger Plants. Methods in Plant Biochemistry. Academic Pres, London. (Ed) DEy, PM., Harborne, JB., chapter 3, p. 47-69.
  • Wagner H., Horhammer, L., Munster, R. 1968. On the Chemistry of Silymarin (Silybin), The Active Principle of The Fruits from Silybum marianum (L.) Gaertn. (Carduus marianus L.). Arzneimittelforschung, 18(6): 688-696.
  • Wallace, SN., Carrier, DJ., Clausen E. 2003. Extraction of Nutraceuticals from Milk Thistle: Part II. Extraction With Organic Solvents. Applied Biochemistry and Biotechnology, 108: 891–903.
  • Yuan, GF., Chen, XE., LI. D. 2016. Chitosan Films and Coatings Containing Essential Oils: The Antioxidant and Antimicrobial Activity, and Application in Food Systems. Food Research International, 89(1):117-128.
There are 38 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Ömer Ertürk

Gülçin Aydın This is me

Melek Çol Ayvaz This is me

Publication Date April 24, 2020
Submission Date May 20, 2020
Published in Issue Year 2020 Volume: 7 Issue: 2

Cite

APA Ertürk, Ö., Aydın, G., & Çol Ayvaz, M. (2020). Laurus Nobilis L., Silybum Marianum L., Nigella Sativa L. ve Prunus Cerasus L.’den Soguk Pres Yöntemi İle İzole Edilen Esansiyel Yağ Bileşenlerinin Antimikrobial ve Antioksidan Aktiviteleri. Türk Tarım Ve Doğa Bilimleri Dergisi, 7(2), 487-499. https://doi.org/10.30910/turkjans.725987