Research Article
BibTex RIS Cite

Erken Gelişme Döneminde Ayçiçeği (Helianthus annuus L.) Bitkisinin Kadmiyum Maruziyetine Tepkisi

Year 2020, Volume: 7 Issue: 4, 1098 - 1107, 20.10.2020
https://doi.org/10.30910/turkjans.682480

Abstract

Çalışma, erken gelişme döneminde ayçiçeği bitkisinin büyüme ve fizyolojik özellikleri yanında bazı metal besin iyonlarının birikimine artan kadmiyum (Cd) maruziyetinin etkilerini değerlendirmek amacıyla sera koşullarında ve gün ışığı altında yürütülmüştür. Bu amaçla, toprağa artan düzeylerde Cd (0, 50, 100, 250, 500 ve 1000 µM CdCl2.H2O) uygulanmıştır. Bitki gelişimi ve kök uzaması Cd maruziyetinden olumsuz etkilenmiş ve Cd’un bitki büyümesi üzerindeki zararlı etkisi köklerden daha fazla gövdede görülmüştür. Cd maruziyeti, gelişim tolerans indeksi (GTI), nispi su içeriği (RWC), klorofil (Chl a+b) ve karotenoid (Car) içerikleri, gövde ve kökte çinko (Zn), potasyum (K) ve kalsiyum (Ca)’un alımları ve Zn’nun toplam akümülasyon oranı (TAR) ile birlikte Cd’un biyoakümülasyonu ve translokasyonunu azaltmıştır. Ayrıca, gövde ve kökteki Cd konsantrasyonları ve alımları, kökler aracığıyla net Cd akümülasyonu, Cd’un toplam akümülasyon oranı, membran geçirgenliğini (MP) ve Car/Chl oranı artan Cd dozlarının toksik etkisiyle artmıştır. Bu çalışma, ayçiçeği bitkisinin morfolojik ve fizyolojik özelliklerini etkileyerek Cd maruziyetinin bitki gelişiminin ilk dönemlerinde büyümede bir azalmaya neden olduğunu göstermiştir.

References

  • Ait Ali, N., Bernal, M. P., Ater, M. 2004. Tolerance and bioaccumulation of cadmium by Phragmites australis grown in the presence of elevated concentrations of cadmium, copper, and zinc. Aquatic Botany, 80 (3): 163-176. doi: 10.1016/j.aquabot.2004.08.008
  • Azevedo, H., Glória Pinto, C. G., Fernandes, J., Loureiro, S., Santos, C. 2005. Cadmium effects on sunflower growth and photosynthesis. Journal of Plant Nutrition, 28 (12): 2211-2220. doi: 10.1080/0190416050 0324782
  • Baker, A. J. M. 1981. Accumulators and excluders–strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 3: 643-654. doi: 10.1080/01904168109 362867
  • Barceló, J., Poschenrieder, C., Andreu, I., Gunse, B. 1986. Cadmium-induced decrease of water stress resistance in bush bean plants (Phaseolus vulgaris L. cv. Contender) I. Effects of Cd on water potential, relative water content, and cell wall elasticity. Journal of Plant Physiology, 125 (1-2):, 17-25. doi: 10.1016/S0176-1617(86) 80239-5
  • Chen, X., Wang, J., Shi, Y., Zhao, M. Q., Chi, G. Y. 2011. Effects of cadmium on growth and photosynthetic activities in pakchoi and mustard. Botanical Studies, 52: 41-46.
  • Çikili, Y., Samet, H., Dursun, S. 2016. Cadmium toxicity and its effects on growth and metal nutrient ion accumulation in Solanaceae plants. Tarım Bilimleri Dergisi - Journal of Agricultural Science, 22: 576-587. doi: 10.1501/ Tarimbil_0000001416
  • Clemens, S. 2006. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88: 1707-1719. doi: 10.1016/j.biochi.2006.07.003
  • De Maria, S., Puschenreiter, M., Rivelli A. R. 2013. Cadmium accumulation and physiological response of sunflower plants to Cd during the vegetative growing cycle. Plant, Soil and Environment, 59 (6): 254-261.
  • Dresler, S., Hanaka, A., Bednarek, W., Maksymiec, W. 2014. Accumulation of low-molecular-weight organic acids in roots and leaf segments of Zea mays plants treated with cadmium and copper. Acta Physiologiae Plantarum, 36 (6): 1565-1575. doi: 10.1007/s11738- 014-1532-x
  • Gomes, M. P., Marques, T. C. L. L. S., Martins, G. A., Carneiro, M. M. L. C., Soares, Â. M. 2012. Cd-tolerance markers of Pfaffia glomerata (Spreng.) Pedersen plants: Anatomical and physiological features. Brazilian Journal of Plant Physiology, 24 (4): 293-304. doi: 10.1590/S1677-04202012 000400008
  • Groppa, M. D., Ianuzzo, M. P., Tomaro, M. L., Benavides, M. P. 2007. Polyamine metabolism in sunflower plants under long-term cadmium or copper stress. Amino acids, 32 (2): 265-275. doi: 10.1007/s00726-006-0343-9
  • Groppa, M. D., Zawoznik, M. S., Tomaro, M. S., Benavides, M. P. 2008. Inhibition of root growth and polyamine metabolism in sunflower (Helianthus annuus) seedling under cadmium and copper stress. Biological Trace Element Research, 126: 246-256. doi: 10.1007/s12011-008-8191-y
  • Haouari, C. C., Nasraoui, A. H., Bouthour, D., Houda, M. D., Daieb, C. B., Mnai, J., Gouia, H. 2012. Response of tomato (Solanum lycopersicon) to cadmium toxicity: Growth, element uptake, chlorophyll content and photosynthesis rate. African Journal of Plant Science, 6 (1): 1-7. doi:10.5897/AJPS11.107
  • Herrero, E. M., López-Gonzálvez, A., Ruiz, M. A., Lucas-García, J. A., Barbas, C. 2010. Uptake and distribution of zinc, cadmium, lead and copper in Brassica napus var. oleifera and Helianthus annuus grown in contaminated soils. International Journal of Phytoremediation, 5: 153-167. doi:10.1080/71361 0177
  • Ito, H., Ohtsuka, T., Tanaka, A. 1996. Conversion of chlorophyll b to chlorophyll a via 7-hydroxymethyl chlorophyll. Journal of Biological Chemistry, 271 (3): 1475-1479. doi: 10.1074/ jbc.271.3.1475
  • Krupa, Z., Siedlecka, A., Skorzynska-Polit, E., Maksymiec, W. 2002. Heavy metal interactions with plant nutrients. In: Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants. (ed) Prasad, M.N.V. and Strzalka, K., Springer, Dordrecht, 287-301. doi: 10.1007/978-94-017-2660-3_11
  • Lichtenthaler, H. K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biometers. Methods in Enzymology, 148: 350-382. doi: 10.1016/00766879 (87)48036-1
  • Liu, J., Li, K., Xu, J., Liang, J., Lu, X., Yang, J., Zhu, Q. 2003. Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes. Field Crop Research, 83: 271-281. doi: 10.1016/ S0378-4290(03)00077-7
  • McGrath, S. P., Zhao, F. J. 2003. Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology, 14: 277-282. doi: 10.1016/S0958-1669(03)00060-0
  • Metwally, A., Safronova, V. I., Belimov, A. A., Dietz, K. J. 2005. Genotypic variation of the response to cadmium toxicity in Pisum sativum L. Journal of Experimental Botany, 56 (409): 167-178. doi: 10.1093/jxb/eri017
  • Miller, R. O. 1998. High-temperature oxidation: Dry ashing. In: Handbook of Reference Methods for Plant Analysis. (ed) Kalra, Y.P., CRC Press, Boca Raton, Florida, USA, 53-56.
  • Mobin, M., Khan, N. A. 2007. Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. Journal of Plant Physiology, 164: 601-610. doi: 10.1016/ j.jplph.2006.03.003
  • Moradi, L., Ehsanzadeh, P. 2015. Effects of Cd on photosynthesis and growth of safflower (Carthamus tinctorius L.) genotypes. Photosynthetica, 53 (4): 506-518. doi: 10.1007/s11099-015-0150-1
  • Page, A., Miller, R., Keeney, D. 1982. Methods of Soil Analysis, 2. Chemical and microbiological properties. American Society of Agronomy, Inc., Madison WI, USA, 1184 p. doi: 10.1002/ jpln.19851480319
  • Piršelová, B., Trebichalský, A., Kuna, R. 2015. Sensitivity of selected crops to lead, cadmium and arsenic in early stages of ontogenesis. Journal of Central European Agriculture, 16 (4): 476-488. doi: 10.5513/JCEA01/16.4.1655
  • Rivelli, A. R., De Maria, S., Puschenreiter, M., Gherbin, P. 2012. Accumulation of cadmium, zinc and copper by Helianthus annuus L.: Impact on plant growth and uptake of nutritional elements. International Journal of Phytoremediation, 14: 320-334. doi: 10.1080/ 15226514.2011.620649
  • Rivetta, A., Negrini, N., Cocucci, M. 1997. Involvement of Ca2+-calmodulin in Cd2+ toxicity during the early phase of radish (Raphanus sativus L.) seed germination. Plant, Cell and Environment, 20: 600-608. doi: 10.1111/j.1365-3040.1997.00072.x
  • Rout, G. R., Samantaray, S., Das, P. 1998. In vitro selection and characterization of Ni-tolerant callus lines of Setaria italica L. Acta Physiologiae Plantarum, 20 (3): 269-275. doi: 10.1007/s11738-998-0058-5
  • Sandalio, L. M., Dalurzo, H. C., Gomez, M., Romero-Puertas, M. C., del Rio, L. A. 2001. Cadmium induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany, 52: 2115-2126. doi: 10. 1093/jexbot/52.364.2115
  • Sanitá di Toppi, L., Gabrielli, R. 1999. Response to cadmium in higher plants. Environmental and Experimental Botany, 41: 105-130. doi: 10.1016/S0098-8472(98)00058-6
  • Shamsi, I. H., Jiang, L., Wei, K., Jilani, G., Hua, S., Zhang, G. P. 2010. Alleviation of cadmium toxicity in soybean by potassium supple-mentation. Journal of Plant Nutrition, 33: 1926-1938. doi: 10.1080/01904167.2010.51 2052
  • Sharma, R. K., Agrawal, M. 2006. Single and combined effects of cadmium and zinc on carrots: Uptake and bioaccumulation. Journal of Plant Nutrition, 29: 1791-1804. doi: 10.1080/019 04160600899246
  • Shi, G., Liu, C., Cai, Q., Liu, Q., Hou, C. 2010. Cadmium accumulation and tolerance of two safflower cultivars in relation to photosynthesis and antioxidative enzymes. Bulletin of Environmental Contamination and Toxicology, 85: 256-263. doi: 10.1007/s00128- 010-0067-0
  • Singh, R. P., Agrawal, M. 2007. Effects of sewage sludge amendment on heavy metal accumu-lation and consequent responses of Beta vulgaris plants. Chemosphere, 67: 2229-2240. doi: 10.1016/j.chemosphere.2006. 12.019
  • Wu, L. 1990. Colonization and establishment of plants in contaminated sites. In: Heavy Metal Tolerance in Plants: Evolutionary Aspects. (ed) Shaw, A.J., CRC Press, Boca Raton, 269-284.
  • Yan, B., Dai, Q., Liu, X., Huang, S., Wang, Z. 1996. Flooding-induced membrane damage, lipid oxidation, and activated oxygen generation in corn leaves. Plant and Soil, 179: 261-68. doi: 10.1007/BF00009336
  • Zembala, M., Filek, M., Walas, S., Mrowiec, H., Kornaś, A., Miszalski, Z., Hartikainen, H. 2010. Effect of selenium on macro-and micro element distribution and physiological parameters of rape and wheat seedlings exposed to cadmium stress. Plant and Soil, 329 (1-2): 457-468. doi: 10.1007/s11104-009-0171-2
  • Zhao, F. J., Hamon, R. E., Lombi, E., McLaughlin, M. J. and McGrath, S. P. 2002. Characteristics of cadmium uptake in two contrasting ecotype of the hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany, 53: 535-543. doi: 10.1093/jexbot/53.368.535
  • Zhao, F. J., Lombi, E., Mcgrath, S. P. 2003. Assessing the potential for zinc and cadmium phytore-mediation with the hyperaccumulator Thlaspi caerulescens. Plant and Soil, 249: 37-43. doi: 10.1023/A:1022530217289
  • Zou, J., Xu, P., Lu, X., Jiang, W. S., Liu, D. H. 2008. Accumulation of cadmium in three sunflower (Helianthus annuus L.) cultivars. Pakistan Journal of Botany, 40 (2): 759-765.

Response of sunflower (Helianthus annuus L.) at early growth stage to cadmium exposure

Year 2020, Volume: 7 Issue: 4, 1098 - 1107, 20.10.2020
https://doi.org/10.30910/turkjans.682480

Abstract

The study carried out in greenhouse conditions at daylight in order to evaluate the effects of increasing Cd exposure on growth and physiological characteristics of sunflower at early growth stage as well the accumulation of some metal nutrient ions. Accordingly, the soil treated with six levels of Cd (0, 50, 100, 250, 500, and 1000 µM CdCl2.H2O). The plant growth and root elongation unfavorably affected by Cd exposure and detrimental effect of Cd on plant growth was appeared shoot more than roots. Growth tolerance index (GTI), relative water content (RWC), the contents of chlorophyll (Chl a+b) and carotenoids (Car), the uptakes of zinc (Zn), potassium (K), and calcium (Ca) in shoot and root, and total accumulation rate (TAR) of Zn were decreased by Cd exposure as well as bioaccumulation and translocation of Cd. Furthermore, increasing Cd doses augmented the concentrations and uptakes of Cd in shoot and root, net accumulation of Cd via roots, the TAR of Cd, membrane permeability (MP) and the rate of Car/Chl caused by its toxic effects. This study demonstrated that Cd exposure cause a reduction in growth due to affecting morphological and physiological characteristics of sunflower in the initial stages of plant development.

References

  • Ait Ali, N., Bernal, M. P., Ater, M. 2004. Tolerance and bioaccumulation of cadmium by Phragmites australis grown in the presence of elevated concentrations of cadmium, copper, and zinc. Aquatic Botany, 80 (3): 163-176. doi: 10.1016/j.aquabot.2004.08.008
  • Azevedo, H., Glória Pinto, C. G., Fernandes, J., Loureiro, S., Santos, C. 2005. Cadmium effects on sunflower growth and photosynthesis. Journal of Plant Nutrition, 28 (12): 2211-2220. doi: 10.1080/0190416050 0324782
  • Baker, A. J. M. 1981. Accumulators and excluders–strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 3: 643-654. doi: 10.1080/01904168109 362867
  • Barceló, J., Poschenrieder, C., Andreu, I., Gunse, B. 1986. Cadmium-induced decrease of water stress resistance in bush bean plants (Phaseolus vulgaris L. cv. Contender) I. Effects of Cd on water potential, relative water content, and cell wall elasticity. Journal of Plant Physiology, 125 (1-2):, 17-25. doi: 10.1016/S0176-1617(86) 80239-5
  • Chen, X., Wang, J., Shi, Y., Zhao, M. Q., Chi, G. Y. 2011. Effects of cadmium on growth and photosynthetic activities in pakchoi and mustard. Botanical Studies, 52: 41-46.
  • Çikili, Y., Samet, H., Dursun, S. 2016. Cadmium toxicity and its effects on growth and metal nutrient ion accumulation in Solanaceae plants. Tarım Bilimleri Dergisi - Journal of Agricultural Science, 22: 576-587. doi: 10.1501/ Tarimbil_0000001416
  • Clemens, S. 2006. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88: 1707-1719. doi: 10.1016/j.biochi.2006.07.003
  • De Maria, S., Puschenreiter, M., Rivelli A. R. 2013. Cadmium accumulation and physiological response of sunflower plants to Cd during the vegetative growing cycle. Plant, Soil and Environment, 59 (6): 254-261.
  • Dresler, S., Hanaka, A., Bednarek, W., Maksymiec, W. 2014. Accumulation of low-molecular-weight organic acids in roots and leaf segments of Zea mays plants treated with cadmium and copper. Acta Physiologiae Plantarum, 36 (6): 1565-1575. doi: 10.1007/s11738- 014-1532-x
  • Gomes, M. P., Marques, T. C. L. L. S., Martins, G. A., Carneiro, M. M. L. C., Soares, Â. M. 2012. Cd-tolerance markers of Pfaffia glomerata (Spreng.) Pedersen plants: Anatomical and physiological features. Brazilian Journal of Plant Physiology, 24 (4): 293-304. doi: 10.1590/S1677-04202012 000400008
  • Groppa, M. D., Ianuzzo, M. P., Tomaro, M. L., Benavides, M. P. 2007. Polyamine metabolism in sunflower plants under long-term cadmium or copper stress. Amino acids, 32 (2): 265-275. doi: 10.1007/s00726-006-0343-9
  • Groppa, M. D., Zawoznik, M. S., Tomaro, M. S., Benavides, M. P. 2008. Inhibition of root growth and polyamine metabolism in sunflower (Helianthus annuus) seedling under cadmium and copper stress. Biological Trace Element Research, 126: 246-256. doi: 10.1007/s12011-008-8191-y
  • Haouari, C. C., Nasraoui, A. H., Bouthour, D., Houda, M. D., Daieb, C. B., Mnai, J., Gouia, H. 2012. Response of tomato (Solanum lycopersicon) to cadmium toxicity: Growth, element uptake, chlorophyll content and photosynthesis rate. African Journal of Plant Science, 6 (1): 1-7. doi:10.5897/AJPS11.107
  • Herrero, E. M., López-Gonzálvez, A., Ruiz, M. A., Lucas-García, J. A., Barbas, C. 2010. Uptake and distribution of zinc, cadmium, lead and copper in Brassica napus var. oleifera and Helianthus annuus grown in contaminated soils. International Journal of Phytoremediation, 5: 153-167. doi:10.1080/71361 0177
  • Ito, H., Ohtsuka, T., Tanaka, A. 1996. Conversion of chlorophyll b to chlorophyll a via 7-hydroxymethyl chlorophyll. Journal of Biological Chemistry, 271 (3): 1475-1479. doi: 10.1074/ jbc.271.3.1475
  • Krupa, Z., Siedlecka, A., Skorzynska-Polit, E., Maksymiec, W. 2002. Heavy metal interactions with plant nutrients. In: Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants. (ed) Prasad, M.N.V. and Strzalka, K., Springer, Dordrecht, 287-301. doi: 10.1007/978-94-017-2660-3_11
  • Lichtenthaler, H. K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biometers. Methods in Enzymology, 148: 350-382. doi: 10.1016/00766879 (87)48036-1
  • Liu, J., Li, K., Xu, J., Liang, J., Lu, X., Yang, J., Zhu, Q. 2003. Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes. Field Crop Research, 83: 271-281. doi: 10.1016/ S0378-4290(03)00077-7
  • McGrath, S. P., Zhao, F. J. 2003. Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology, 14: 277-282. doi: 10.1016/S0958-1669(03)00060-0
  • Metwally, A., Safronova, V. I., Belimov, A. A., Dietz, K. J. 2005. Genotypic variation of the response to cadmium toxicity in Pisum sativum L. Journal of Experimental Botany, 56 (409): 167-178. doi: 10.1093/jxb/eri017
  • Miller, R. O. 1998. High-temperature oxidation: Dry ashing. In: Handbook of Reference Methods for Plant Analysis. (ed) Kalra, Y.P., CRC Press, Boca Raton, Florida, USA, 53-56.
  • Mobin, M., Khan, N. A. 2007. Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. Journal of Plant Physiology, 164: 601-610. doi: 10.1016/ j.jplph.2006.03.003
  • Moradi, L., Ehsanzadeh, P. 2015. Effects of Cd on photosynthesis and growth of safflower (Carthamus tinctorius L.) genotypes. Photosynthetica, 53 (4): 506-518. doi: 10.1007/s11099-015-0150-1
  • Page, A., Miller, R., Keeney, D. 1982. Methods of Soil Analysis, 2. Chemical and microbiological properties. American Society of Agronomy, Inc., Madison WI, USA, 1184 p. doi: 10.1002/ jpln.19851480319
  • Piršelová, B., Trebichalský, A., Kuna, R. 2015. Sensitivity of selected crops to lead, cadmium and arsenic in early stages of ontogenesis. Journal of Central European Agriculture, 16 (4): 476-488. doi: 10.5513/JCEA01/16.4.1655
  • Rivelli, A. R., De Maria, S., Puschenreiter, M., Gherbin, P. 2012. Accumulation of cadmium, zinc and copper by Helianthus annuus L.: Impact on plant growth and uptake of nutritional elements. International Journal of Phytoremediation, 14: 320-334. doi: 10.1080/ 15226514.2011.620649
  • Rivetta, A., Negrini, N., Cocucci, M. 1997. Involvement of Ca2+-calmodulin in Cd2+ toxicity during the early phase of radish (Raphanus sativus L.) seed germination. Plant, Cell and Environment, 20: 600-608. doi: 10.1111/j.1365-3040.1997.00072.x
  • Rout, G. R., Samantaray, S., Das, P. 1998. In vitro selection and characterization of Ni-tolerant callus lines of Setaria italica L. Acta Physiologiae Plantarum, 20 (3): 269-275. doi: 10.1007/s11738-998-0058-5
  • Sandalio, L. M., Dalurzo, H. C., Gomez, M., Romero-Puertas, M. C., del Rio, L. A. 2001. Cadmium induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany, 52: 2115-2126. doi: 10. 1093/jexbot/52.364.2115
  • Sanitá di Toppi, L., Gabrielli, R. 1999. Response to cadmium in higher plants. Environmental and Experimental Botany, 41: 105-130. doi: 10.1016/S0098-8472(98)00058-6
  • Shamsi, I. H., Jiang, L., Wei, K., Jilani, G., Hua, S., Zhang, G. P. 2010. Alleviation of cadmium toxicity in soybean by potassium supple-mentation. Journal of Plant Nutrition, 33: 1926-1938. doi: 10.1080/01904167.2010.51 2052
  • Sharma, R. K., Agrawal, M. 2006. Single and combined effects of cadmium and zinc on carrots: Uptake and bioaccumulation. Journal of Plant Nutrition, 29: 1791-1804. doi: 10.1080/019 04160600899246
  • Shi, G., Liu, C., Cai, Q., Liu, Q., Hou, C. 2010. Cadmium accumulation and tolerance of two safflower cultivars in relation to photosynthesis and antioxidative enzymes. Bulletin of Environmental Contamination and Toxicology, 85: 256-263. doi: 10.1007/s00128- 010-0067-0
  • Singh, R. P., Agrawal, M. 2007. Effects of sewage sludge amendment on heavy metal accumu-lation and consequent responses of Beta vulgaris plants. Chemosphere, 67: 2229-2240. doi: 10.1016/j.chemosphere.2006. 12.019
  • Wu, L. 1990. Colonization and establishment of plants in contaminated sites. In: Heavy Metal Tolerance in Plants: Evolutionary Aspects. (ed) Shaw, A.J., CRC Press, Boca Raton, 269-284.
  • Yan, B., Dai, Q., Liu, X., Huang, S., Wang, Z. 1996. Flooding-induced membrane damage, lipid oxidation, and activated oxygen generation in corn leaves. Plant and Soil, 179: 261-68. doi: 10.1007/BF00009336
  • Zembala, M., Filek, M., Walas, S., Mrowiec, H., Kornaś, A., Miszalski, Z., Hartikainen, H. 2010. Effect of selenium on macro-and micro element distribution and physiological parameters of rape and wheat seedlings exposed to cadmium stress. Plant and Soil, 329 (1-2): 457-468. doi: 10.1007/s11104-009-0171-2
  • Zhao, F. J., Hamon, R. E., Lombi, E., McLaughlin, M. J. and McGrath, S. P. 2002. Characteristics of cadmium uptake in two contrasting ecotype of the hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany, 53: 535-543. doi: 10.1093/jexbot/53.368.535
  • Zhao, F. J., Lombi, E., Mcgrath, S. P. 2003. Assessing the potential for zinc and cadmium phytore-mediation with the hyperaccumulator Thlaspi caerulescens. Plant and Soil, 249: 37-43. doi: 10.1023/A:1022530217289
  • Zou, J., Xu, P., Lu, X., Jiang, W. S., Liu, D. H. 2008. Accumulation of cadmium in three sunflower (Helianthus annuus L.) cultivars. Pakistan Journal of Botany, 40 (2): 759-765.
There are 40 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Yakup Çıkılı 0000-0002-0393-6248

Halil Samet 0000-0003-2376-7944

Nuray Çiçek 0000-0001-5044-5276

Publication Date October 20, 2020
Submission Date February 2, 2020
Published in Issue Year 2020 Volume: 7 Issue: 4

Cite

APA Çıkılı, Y., Samet, H., & Çiçek, N. (2020). Response of sunflower (Helianthus annuus L.) at early growth stage to cadmium exposure. Türk Tarım Ve Doğa Bilimleri Dergisi, 7(4), 1098-1107. https://doi.org/10.30910/turkjans.682480