Year 2019, Volume 20, Issue 1, Pages 73 - 81 2019-04-15

The technological properties of the high density polyethylene composites filled with alkali treated cupula fiber
Alkali muameleli kupula lifi katkılı yüksek yoğunluklu polietilen kompozitlerin teknolojik özellikleri

Sevda Boran Torun [1] , Emrah Peşman [2] , Ayfer Dönmez Çavdar [3]

8 71

In this study, thermoplastic composites reinforced with cupula fiber were determined their mechanical, physical and thermal properties. The polyethylene composites made with various percentages (30, 40, and 50 wt.%) of cupula fibers were produced. The polyethylene graft maleic anyhydride as a couple agent with loading (3%) of composite was used. However, alkali treatment was applied to the cupula fibers as 5% by weight sodium hydroxide (NaOH) during 24 hours in order to improve technological properties of the composites. Based on the finding results, the composites with alkali treatment of the cupula fibers was provided better mechanical properties compared to untreated fiber reinforced composites. The values of the water absorption and thickness swelling of the composites reinforced with alkali treated the cupula fibers, especially in the composite with alkali treated at 50% cupula fiber, were increased compared to untreated fiber reinforced composites.

Bu çalışma ile kestane kupula lifi katkılı termoplastik kompozitlerin mekanik, fiziksel ve termal özellikleri belirlenmiştir. Kupula lifi belirli oranlarda (%30, %40 ve %50) ilave edilerek polietilen kompozitleri üretilmiştir. Uyumsuzluk giderici ajan olarak maleik anhidritle graft edilmiş polietilen %3 oranında katılmıştır. Kompozitlerin teknolojik özelliklerini geliştirmek amacıyla ayrıca kupula lifleri %5 sodyum hidroksit (NaOH) ile 24 saat boyunca muamele edilmiştir. Elde edilen sonuçlar incelendiğinde, alkali muameleli kupula lifi katkılı kompozitlerde muamele edilmemiş kompozitlere göre daha iyi mekanik özellikler elde edilmiştir. Alkali ile muamele edilmiş kupula lif kompozitlerin su alma ve kalınlık artışı değerleri alkali muamelesiz kompozitlere göre kıyaslandığında özellikle %50 alkali muameleli kupula lifi katkılı kompozit örneklerinde artmıştır.

  • Adhikary KB, Pang S., Staiger MP (2008) Dimensional stability and mechanical behaviour of wood-plastic composites based on recycled and virgin high-density polyethylene (HDPE). Compos Part B-Eng 39 (5): 807-815
  • Ashori A, Nourbakhsh A (2009) Characteristics of wooden fiber plastic composites made of recycled materials. Waste Manage 29(4):1291-1295
  • Barczewski M, Matykiewicz D, Krygier A, Andrzejeweski J, Skórczewska K (2017) Characterization of poly(lactic acid) biocomposites filled with chestnut shell waste. J Mater Cycles Waste 20(2):914-924
  • Benyahia A, Merrouche A, Rokbi M, Kouadri Z (2013) Study of effect of Alkali Treatment of natural fibers on the mechanical behavior of the composite unsaturated polyester-fiber alfa. 21ème Congrès Français de Mécanique Bordeaux, 26 au 30 août 2013
  • Bisandaand ETN, Ansell MP (1991) The effect of silane treatment on the mechanical andphysical properties of sisal epoxycomposites. Comp Sci Technol 41:2, 165–178
  • Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Progress in Polym Sci 24: 221-274, 1999
  • Boran S, Kızıltaş A, Kızıltaş EE, Gardner DJ (2016) The comparative study of different mixing methods for microcrystalline cellulose/polyethylene composites. Int Polym Process 31: 92-103
  • Cao Y, Shibata S, Fukumoto I (2006) Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments. Compos Part A Appl Sci Manuf 37: 423-429
  • Clemons C (2002) Wood-plastic composites in the United States: The ınterfacing of two ındustries. Forest Prod J 52:10-18
  • Daud S, Ismail H, Bakar A (2017) A study on the curing characteristics, tensile, fatigue, and morphological properties of alkali-treated palm kernel Shell-filled natural rubber composites. BioResources 12:1, 1273-1287
  • Dönmez Çavdar A, Mengeloğlu F, Karakuş K (2015) Effect of boric acid and borax on mechanical, fire and thermal properties of wood flour filled high density polyethylene composites. Measurement 60: 6-12
  • Eckert C (2000) Opportunities for natural fibers in plastic composites. In: Proceedings of the Progress in Wood Fibre Plastic Composites, Toronto, ON
  • El-Shekeil YA, Sapuan SM, Khalina A, Zainudin ES, Al-Shuja’a OM (2012) Effect of alkali treatment on mechanical and thermal properties of kenaf fiber-reinforced thermoplastic polyurethane composite. J Therm Anal Calorim 109 (3):1435-1443
  • Habibi Y, El-Zawawy WK, Ibrahim MM, Dufresne A (2008) Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibers from Egyptianagro-industrial residues, Compos Sci Technol 68 (7-8): 1877-1885
  • Goud G, Ra, RN (2011) Effect of fibre content and alkali treatment on mechanical properties of Roystonea regia-reinforced epoxy partially biodegradable composites. Bull. Mater. Sci., 34 (7), 1575-1581
  • Joseph S.,Sreekala JMS, Oommen Z, Koshyc P, Thomas S (2002) A comparison of the mechanical properties of phenol formaldehyde composites reinforced with banana fibresand glass fibres. Compos Sci Technol 62, 1857-1868
  • Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Arenatural fiber composites environmentally superior to glass fiber reinforced composites? Compos Part A Appl Sci Manuf 35(3): 371-376
  • Kendir G, Öztürk A, Köroğlu A (2016) Castanea Sativa Mill. (Kestane), meyve ve yaprak anatomisi. Ankara Eczane Fakülte Dergisi, Ankara, 40 (2):1-18
  • Lazim Y, Salit SM, Zainudin ES, Mustapha ES, Jawaid M (2014) Effect of alkali treatment on the physical, mechanical, and morphological properties of waste betel nut &Areca catechu) husk fibre. BioResources 9(4):7721-7736
  • Manalo, AC, Wani E, Zukarnain NA, Karuneasena W, Lau K (2015) Effects of alkali treatment and elevated temperature on the mechanical properties of bamboo fibre-polyester composites. Compos Part B:Eng 80:73-83
  • Merlini C, Soldi V, Barra GMO (2011) Influence of fiber surface treatment and length on physico-chemical properties of short random banana fiber-reinforced castor oil polyurethane composites. Polym Test 30: 833-840
  • Mohanty AK, Misra M, Hinrichsen G (2000) Biofibers, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276/277(1):1-24
  • Mohanty A K, Khan MA, Hinrichsen G (2000) Surface modification of jüte and its influence on performance of biodegradable jute-fabric/Biopolcomposites. Compos Sci Technol 60(7):1115-1124
  • Mothé CG, Araújo CR, Wang SH (2009) Thermaland mechanicals characteristics of polyurethane/curaua fiber composites. J Therm Anal Calorim 95:181-185Mwaikambo LY, Ansell M (2002) Chemical modification of hemp, sisal, jute and kapok fibers by alkalization. J App Polym Sci 84:2222-2234
  • Njuguna J, Wambua P, Pielichowski K, Kayvantash K (2011) Natural fibre-reinforced polymer composites and nanocomposites for automotive applications,. In: CelluloseFibers: Bio- and Nano-Polymer Composites. Springer, New York, NY, USA, pp 661-700
  • NorAzowa I, Kamarul Arifin H, Khalina A (2010) Effect of fiber treatment on mechanical properties of kenaf fiber-Ecoflex composites. J Reinf Plast Comp 29: 2192-2197Ou R, Xie Y, Wolcott MP, Yuan F, Wang Q (2014) Morphology, mechanical properties, and dimensional stability of wood particle/high density polyethylene composites: Effects of removal wood cell Wall composition. Mater Design 58.339-345
  • Puglia D, Biagiotti J Kenn J M (2005) A review on natural fibre-based composites- part II: Application of natural reinforcements in composite materials for automotive industry. J Nat Fibers 1:23-65
  • Rokbi M, Osmani H, Imad A, Benseddiq N (2011) Effect of chemical treatment on flexure properties ofnatural fiber-reinforced polyester composite. Procedia Eng 10:2092-2097
  • Santos PA, Giriolli JC, Amarasekera J, Moraes G (2008) Natural Fibers PlasticComposites in Automotive Applications, SPE Automotive Composites Conference &Exhibition Troy, MI, USA, 1-9
  • Song W, Wei W, Ren C, Zhang S (2017) Effect of heat treatment or alkali treatment of veneers on the mechanical properties of eucalyptus veneer/polyethylene film plywood composites. Bioresources 12 (4):8683-8703
  • Spoljaric S, Genovese A, Shanks RA (2009) Polypropylene-microcrystalline cellulose composites with enhanced compatibility and properties. Compos Part A Appl Sci Manuf 40:791-799
  • Setswalo K, Namoshe M, Kutua S, Oladijo OP., Samson B (2017) Effect of thermal and alkali treatment on Pterocarpus angolensis (Mukwa) wood flour. Procedia Manufact 7:205-210
  • Trost BM (2002) On ınventing reactions for atom economy. Accounts Chem Res 35(9):695-705
  • Wunderlich B (1990) Thermal analysis, Academic Press, pp 417-413
  • Yan L, Yiu-Wing M, Lin Y (2000) Sisal fiber and its composites: A review of recent developments. Compos Sci Technol 60:2037-2055
  • Yan L, Chouw N, Yuan X (2012) Improving the mechanical properties of natural fibre fabric reinforced epoxy composites by alkali treatment. J Reinf Plast Comp 31:425-437
  • Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12):1781-1788Xu X (2008) Cellulose fiber reinforcednylon 6 or nylon 66 composites, PhD thesis, Georgia Institute of Technology, Atlanta, GE, 208 p
Primary Language tr
Subjects Forestry
Published Date Nisan
Journal Section Research Article
Authors

Orcid: 0000-0001-5403-1150
Author: Sevda Boran Torun (Primary Author)
Institution: KARADENİZ TEKNİK ÜNİVERSİTESİ
Country: Turkey


Orcid: 0000-0003-0189-4715
Author: Emrah Peşman
Institution: ARTVİN ÇORUH ÜNİVERSİTESİ
Country: Turkey


Orcid: 0000-0002-9084-2265
Author: Ayfer Dönmez Çavdar

Bibtex @research article { artvinofd510566, journal = {Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi}, issn = {2146-1880}, eissn = {2146-698X}, address = {Artvin Çoruh University}, year = {2019}, volume = {20}, pages = {73 - 81}, doi = {10.17474/artvinofd.510566}, title = {Alkali muameleli kupula lifi katkılı yüksek yoğunluklu polietilen kompozitlerin teknolojik özellikleri}, key = {cite}, author = {Boran Torun, Sevda and Peşman, Emrah and Dönmez Çavdar, Ayfer} }
APA Boran Torun, S , Peşman, E , Dönmez Çavdar, A . (2019). Alkali muameleli kupula lifi katkılı yüksek yoğunluklu polietilen kompozitlerin teknolojik özellikleri. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 20 (1), 73-81. DOI: 10.17474/artvinofd.510566
MLA Boran Torun, S , Peşman, E , Dönmez Çavdar, A . "Alkali muameleli kupula lifi katkılı yüksek yoğunluklu polietilen kompozitlerin teknolojik özellikleri". Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 20 (2019): 73-81 <http://ofd.artvin.edu.tr/issue/42218/510566>
Chicago Boran Torun, S , Peşman, E , Dönmez Çavdar, A . "Alkali muameleli kupula lifi katkılı yüksek yoğunluklu polietilen kompozitlerin teknolojik özellikleri". Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 20 (2019): 73-81
RIS TY - JOUR T1 - Alkali muameleli kupula lifi katkılı yüksek yoğunluklu polietilen kompozitlerin teknolojik özellikleri AU - Sevda Boran Torun , Emrah Peşman , Ayfer Dönmez Çavdar Y1 - 2019 PY - 2019 N1 - doi: 10.17474/artvinofd.510566 DO - 10.17474/artvinofd.510566 T2 - Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi JF - Journal JO - JOR SP - 73 EP - 81 VL - 20 IS - 1 SN - 2146-1880-2146-698X M3 - doi: 10.17474/artvinofd.510566 UR - https://doi.org/10.17474/artvinofd.510566 Y2 - 2019 ER -
EndNote %0 Artvin Coruh University Journal of Forestry Faculty Alkali muameleli kupula lifi katkılı yüksek yoğunluklu polietilen kompozitlerin teknolojik özellikleri %A Sevda Boran Torun , Emrah Peşman , Ayfer Dönmez Çavdar %T Alkali muameleli kupula lifi katkılı yüksek yoğunluklu polietilen kompozitlerin teknolojik özellikleri %D 2019 %J Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi %P 2146-1880-2146-698X %V 20 %N 1 %R doi: 10.17474/artvinofd.510566 %U 10.17474/artvinofd.510566
ISNAD Boran Torun, Sevda , Peşman, Emrah , Dönmez Çavdar, Ayfer . "Alkali muameleli kupula lifi katkılı yüksek yoğunluklu polietilen kompozitlerin teknolojik özellikleri". Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 20 / 1 (April 2019): 73-81. https://doi.org/10.17474/artvinofd.510566