Araştırma Makalesi
PDF EndNote BibTex RIS Kaynak Göster

Changes in some physical properties and compressive strength of European larch and Caucasian spruce woods after different incising pretreatments

Yıl 2022, Cilt 23, Sayı 2, 175 - 183, 28.10.2022
https://doi.org/10.17474/artvinofd.1179285

Öz

Different incising pretreatments are technological processes to improve the permeability of refractory wood species. In recent years, there has been an increasing interest in determining the changes in the physical and mechanical properties of wood as a result of different incising processes. Because it is important that the physical properties of wood do not change negatively and there is no weakening in the mechanical properties after all incising pretreatments. Therefore, the effects of mechanical, biological, and laser incising pretreatments on some physical properties and compressive strength parallel to the grain of  Picea orientalis L. and Larix decidua Mill. sapwood samples were studied. The weight losses occurred in the samples, density, compressive strength parallel to the grain, and volumetric shrinkage and swelling values of the woods were evaluated after every pretreatment. According to the results, the highest weight losses (spruce: 9.82%; larch: 8.47%) were observed in the bioincised samples, and the lowest weight losses (spruce: 1.12%: larch: 1.66%) occurred in the mechanically incised samples in both spruce and larch sapwoods. The volumetric shrinkage and swelling in larch decreased laser incising pretreatments, however, there was no significant difference among all incising pretreatment groups in spruce. The density decreased laser incised larch wood samples, however, no statistically significant change in the spruce wood samples was observed in all incising pretreatments. On the other hand, the compressive strength parallel to the grain in spruce and larch wood samples decreased after laser incising and bioincising.



Kaynakça

  • Ahmed SA, Sehlstedt-Persson M, Karlsson O, Morén T (2012) Uneven distribution of preservative in kiln-dried sapwood lumber of Scots pine: Impact of wood structure and resin allocation. Holzforschung 66(2), 251-258. DOI 10.1515/HF.2011.126
  • Bakir D, Dogu D, Kartal SN (2021a) Anatomical structure and degradation characteristics of bioincised oriental spruce wood by Physisporinus vitreus. Wood Material Science & Engineering. DOI: 10.1080/17480272.2021.1964594
  • Bakir D, Dogu D, Kartal SN, Terzi E (2021b) Evaluation of pit dimensions and uptake of preservative solutions in wood after permeability improvement by bioincising. Wood Material Science & Engineering. DOI: 10.1080/17480272.2021.2014956
  • Bakir D, Kartal SN, Terzi E, Dogu D (2022) The effects of bioincising by Physisporinus vitreus on CuO retention and copper element leaching in oriental spruce wood. Maderas. Ciencia y Tecnología 24(27), 1-23. DOI: 10.4067/s0718-221x2022000100427
  • Bakir D (2022) Effects of different incising pretreatments in improving permeability in two refractory wood species. Bioresources 17(3), 5021-5037. DOI: 10.15376/biores.17.3.5021-5037
  • BS EN 113-1 (2020) Durability of wood and wood-based products. Test method against wood destroying basidiomycetes. BSI Standards Publication, London, England.
  • Chang L, Rong B, Xu G, Meng Q, Wang L (2020) Mechanical properties, components and decay resistance of Populus davidiana bioincised by Coriolus versicolor. J. Forestry Res. 31(5), 2023-2029. DOI: 10.1007/s11676-019-00972-3
  • Clausen CA (1995) Bacterial associations with decaying wood: A review. International Biodetertoration & Biodegradation 37(1-2), 101-107. DOI: 10.1016/0964-8305(95)00109-3
  • Dale A, Morris PI, Uzunovic A, Symons P, Stirling R (2019) Biological incising of lodgepole pine and white spruce lumber with Dichomitus squalens. European Journal of Wood and Wood Products 77(6), 1161-1176. DOI: 10.1007/s00107-019-01471-2
  • Danihelová A, Reinprecht L, Spišiak D, Hrčka R (2018) Impact of the Norway spruce sapwood treatment with the staining fungus Sydowia polyspora on its permeability and dynamic modulus of elasticity. Acta Facultatis Xylologiae Zvolen 60(1), 13-18. DOI: 10.17423/afx.2018.60.1.02
  • Durmaz S, Yıldız UC, Yıldız S (2015) Alkaline enzyme treatment of spruce wood to increase permeability. BioResources 10(3), 4403-4410. DOI: 10.15376/biores.10.3.4403-4410
  • Durmaz S, Yıldız UC (2016) Increasing the permeability of spruce sapwood (Picea orientalis L.) with enzymatic treatment. Artvin Coruh University Journal of Forestry Faculty, 17(1), 32–37. ISSN:2146-1880, eISSN: 2146-698X.
  • Emaminasab M, Tarmian A, Pourtahmasi K, Avramidis S (2016) Improving the permeability of Douglas-fir (Pseudotsuga menziesii) containing compression wood by Physisporinus vitreus and Xylaria longipes. International Wood Products Journal 7(3), 110-115. DOI: 10.1080/20426445.2016.1155788
  • Fuhr MJ, Stührk C, Münch B, Schwarze FWMR, Schubert M (2012a) Automated quantification of the impact of the wood decay fungus Physisporinus vitreus on the cell wall structure of Norway spruce by tomographic microscopy. Wood Science and Technology 46(4), 769-779. DOI: 10.1007/s00226-011-0442-y
  • Fuhr MJ, Stührk C, Schubert M, Schwarze FWMR, Herrmann HJ (2012b) Modelling the effect of environmental factors on the hyphal growth of the basidiomycete Physisporinus vitreus. Journal of Basic Microbiology 52(5), 523-530. DOI: 10.1002/jobm.201100425
  • Fuhr MJ, Schubert M, Stührk C, Schwarze FWMR, Herrmann HJ (2013) Penetration capacity of the wood-decay fungus Physisporinus vitreus. Complex Adaptive Systems Modeling 1, 1-15. DOI: 10.1186/2194-3206-1-6
  • Gilani MS, Boone MN, Mader K, Schwarze FWMR (2014) Synchrotron X-ray micro-tomography imaging and analysis of wood degraded by Physisporinus vitreus and Xylaria longipes. Journal of Structural Biology 187(2), 149-157. DOI: 10.1016/j.jsb.2014.06.003
  • Gilani MS, Schwarze FWMR (2015) Hygric properties of Norway spruce and sycamore after incubation with two white rot fungi. Holzforschung 69(1), 77-86. DOI: 10.1515/hf-2013-0247
  • Gündüz G, Aydemir D, Karakaş G (2009) The effects of thermal treatment on the mechanical properties of wild Pear (Pyrus elaeagnifolia Pall.) wood and changes in physical properties. Materials and Design 30 (10) 4391–4395. DOI:10.1016/j.matdes.2009.04.005
  • Hansmann C, Gindl W, Wimmer R, Teischinger A (2002) Permeability of wood – A review. Wood Research 47(4), 1-16.
  • Islam N, Ando K, Yamauchi H, Kobayashi Y, Hattori N (2007) Passive impregnation of liquid in impermeable lumber incised by laser. Journal of Wood Science 53(5), 436-441. DOI: 10.1007/s10086-006-0878-0
  • Islam N, Ando K, Yamauchi H, Kobayashi Y, Hattori N (2008) Comparative study between full cell and passive impregnation method of wood preservation for laser incised Douglas fir lumber. Wood Science and Technology 42(4), 343-350. DOI: 10.1007/s00226-007-0168-z
  • ISO 4859 (1982) Wood – determination of radial and tangential swelling, Geneva, Switzerland.
  • JMP Statistical Software (2020) JMP 1989-2007: Version 5.0, SAS Institute Inc., Cary, NC, USA. https://www.capterra.com/p/151815/JMP-Statistical-Software/
  • Kartal SN (2002) Effects of incising on treatability and leachability of CCA-C- treated eastern hemlock. Forest Products Journal 52(2), 44-48.
  • Kobayashi Y, Iida I, Imamura Y, Watanabe U (1998a) Improvement of penetrability of sugi wood by impregnation of bacteria using sap-flow method. Journal of Wood Science 44(6), 482-485. DOI: 10.1007/BF00833414
  • Kobayashi Y, Iida I, Imamura Y, Watanabe U (1998b) Drying and anatomical characteristics of sugi wood attacked by bacteria during pond storage. Journal of Wood Science 44(6), 432- 437. DOI: 10.1007/BF00833406
  • Lehringer C, Hillebrand K, Richter K, Arnold M, Schwarze FWMR, Militz H (2010) Anatomy of bioincised Norway spruce wood. International Biodeterioration & Biodegradation 64(5), 346-355. DOI: 10.1016/j.ibiod.2010.03.005
  • Matsumura J, Booker RE, Donaldson BGRLA, Mikajiri N, Matsunaga H, Oda K (1999) Impregnation of radiata pine wood by vacuum treatment II: effect of pre-steaming on wood structure and resin content. Journal of Wood Science, 45(6), 456– 462.
  • Messner K, Bruce A, Bongers HP (2003) Treatability of refractory wood species after fungal pre-treatment. In The First European Conference on Wood Modification. Ghent, Belgium. pp 389-401.
  • Morris PI (1995) Pasific silver fir is the more treatable component of hem-fir from coastal British Columbia. Forest Products Journal 45(9), 37-40.
  • Nath S, Waugh DG, Ormondroyd GA, Spear MJ, Pitman AJ, Sahoo S, Curling SF, Mason P (2020a) CO2 laser interactions with wood tissues during single pulse laser-incision. Optics and Laser Technology 126, article no. 106069, 1-21. DOI: 10.1016/j.optlastec.2020.106069
  • Nath S, Waugh DG, Ormondroyd GA, Spear M, Pitman A, Curling S, Mason P (2020b) Laser incising of wood: A review. Lasers in Engineering 45(4-6), 381-403.
  • Nath S, Waugh DG, Ormondroyd GA, Spear MJ, Curling SF, Pitman AJ, Mason P (2022) Percussion Nd:YAG laser incision of radiata pine: Efects of laser processing parameters and wood anatomy. Lasers in Manufacturing and Materials Processing 9(2), 173-192. DOI: 10.1007/s40516-022-00169-3
  • Pánek M, Reinprecht L (2011) Bacillus subtilis for improving spruce wood impregnability. BioResources 6(3), 2912-2931. DOI: 10.15376/biores.6.3.2912-2931
  • Panigrahi S, Kumar S, Panda S, Borkataki S (2018) Effect of permeability on primary processing of wood. Journal of Pharmacognosy Phytochemistry, 7(4), 2593–2598.
  • Perrin PW (1978) Review of incising and its effects on strength and preservative treatment of wood. Forest Products Journal 28(2), 27-33.
  • Ruddick JNR (1991) Laser incising of Canadian softwood to improve treatability. Forest Products Journal 41(4), 53-57.
  • Schubert M, Stührk C, Fuhr MJ, Schwarze FWMR (2013) Agrobacterium-mediated transformation of the white-rot fungus Physiologists vitreus. Journal of Microbiological Methods 95(2), 251-252. DOI: 10.1016/j.mimet.2013.09.001
  • Schubert M, Stührk C, Fuhr MJ, Schwarze FWMR (2014) Imaging hyphal growth of Physisporinus vitreus in Norway spruce wood by means of confocal laser scanning microscopy (CLSM). Holzforschung 68(6), 727-730. DOI: 10.1515/hf-2013-0183
  • Suzuki K, Teduka Y, Ando K, Hattori N, Kitayawa S, Kato H, Nagao H, Tanaka T (1996) Laser incising of wood, the effect of incising density on bending strength of sugi square lumber (in Japanese). in: Proceedings of the 46th Annual Meeting of the Japanese Wood Research Society, Kumamoto, Japan, pp.130.
  • Tajrishi IZ, Tarmian A, Oladi R, Humar M, Ahmadzadh M (2021) Biodegradation and microscale treatability pattern of loblolly pine heartwood bioincised by Bacillus subtilis and Physisporinus vitreus. Drvna Industrija 72(4), 365-372. DOI: 10.5552/drvind.2021.2034
  • TS 2472 (1976), Odunda fiziksel ve mekanik deneyler için birim hacim ağırlığı tayini, TSE, Ankara.
  • TS 2595 (1977), Odunun liflere paralel doğrultuda basınç dayanımı tayini, TSE, Ankara.
  • Ünligil HH (1972) Penetrability and strength of white spruce after ponding. Forest Products Journal 22, 92-100.
  • Wang JZ, DeGroot R (1996) Treatability and durability of heartwood. National Conference on Wood Transportation Structures. Madison, WI, USA. pp 252-260
  • Wang Y, Ando K, Hattori N. (2013) Changes in the anatomy of surface and liquid uptake of wood after laser incising. Wood Science and Technology 47(3), 447-455. DOI: 10.1007/s00226-012-0497-4
  • Watanabe U, Imamura Y, Iida I (1998) Liquid penetration of precompressed wood VI: Anatomical characterization of pit fractures. Journal of Wood Science 44(2), 158-162. DOI:10.1007/BF00526263
  • Winandy JE, Morrell JJ, Lebow ST (1995) Review of the effects of incising on treatability and strength. in: Proceedings of Wood Preservation in the 90’s and Beyond, Savannah, GA, USA, pp. 65- 69.
  • Winandy JE, Morrell JJ (1998) Effects of incising on lumber strength and stiffness: Relationships between incision density and depth, species, and MSR grade. Wood and Fiber Science 30(2), 185-197.
  • Winandy JE, Hassan B, Morrell JJ (2022) Review of the effects of incising on treatability and strength of wood. Wood Material Science and Engineering. DOI: 10.1080/17480272.2022.2028008
  • Yıldız S, Çanakçı S, Yıldız ÜC, Özgenç Ö, Tomak ED (2012) Improving of the impregnability of refractory spruce wood by Bacillus licheniformis pretreatment. BioResources 7(1), 565-577. DOI: 10.15376/biores.7.1.565-577

Farklı delme ön işlemleri sonrası Avrupa melezi ve Doğu ladini odunlarının basınç direnci ve bazı fiziksel özelliklerindeki değişiklikler

Yıl 2022, Cilt 23, Sayı 2, 175 - 183, 28.10.2022
https://doi.org/10.17474/artvinofd.1179285

Öz

Farklı delme (insizing) ön işlemleri emprenyesi güç odun türlerinin permeabilitesini artırmak için uygulanan teknolojik yöntemlerdir. Son zamanlarda farklı delme ön işlemlerinin odunun fiziksel ve mekanik özelliklerinde meydana getirdiği değişikliklerin belirlenmesine yönelik büyük bir ilgi söz konusudur. Çünkü uygulanan tüm delme ön işlemlerinden sonra odunun fiziksel özelliklerinin olumsuz yönde değişmemesi ve mekanik özelliklerde düşüş olmaması önemlidir. Bu nedenle Picea orientalis (L.) Peterm and Larix decidua Mill. diri odun örneklerinin bazı fiziksel özellikleri ve liflere paralel basınç direnci üzerinde mekanik, biyolojik ve lazer delme ön işlemlerinin etkileri incelendi. Uygulanan her ön işlemden sonra meydana gelen ağırlık kayıpları, yoğunluk, liflere paralel basınç direnci ve hacimsel genişleme ve daralma değerleri değerlendirildi. Elde edilen sonuçlara göre; hem ladin hem de melez diri odun örneklerinde en yüksek ağırlık kayıpları (ladin: 9.82%; melez: 8.47%) biyolojik delme uygulanmış örneklerde gözlenirken en düşük ağırlık kayıpları (ladin: 1.12%: melez: 1.66%) ise mekanik delme uygulanmış örneklerde gözlendi. Melez odununda hacimsel daralma ve genişleme lazer delme ön işlemi neticesinde azalmıştır. Fakat ladin odununda uygulanan tüm delme ön işlem grupları ile kontrol örnekleri arasında önemli bir fark bulunamamıştır. Lazer delme uygulanan melez odun örneklerinde yoğunluk azalmasına rağmen ladin odun örneklerinde uygulanan tüm ön işlemler ile kontrol örnekleri arasında istatistiksel olarak önemli bir değişiklik gözlenmemiştir. Diğer taraftan, ladin ve melez odun örneklerinde liflere paralel basınç direnci ise lazer ve biyolojik delme sonrasında azalmıştır.

Kaynakça

  • Ahmed SA, Sehlstedt-Persson M, Karlsson O, Morén T (2012) Uneven distribution of preservative in kiln-dried sapwood lumber of Scots pine: Impact of wood structure and resin allocation. Holzforschung 66(2), 251-258. DOI 10.1515/HF.2011.126
  • Bakir D, Dogu D, Kartal SN (2021a) Anatomical structure and degradation characteristics of bioincised oriental spruce wood by Physisporinus vitreus. Wood Material Science & Engineering. DOI: 10.1080/17480272.2021.1964594
  • Bakir D, Dogu D, Kartal SN, Terzi E (2021b) Evaluation of pit dimensions and uptake of preservative solutions in wood after permeability improvement by bioincising. Wood Material Science & Engineering. DOI: 10.1080/17480272.2021.2014956
  • Bakir D, Kartal SN, Terzi E, Dogu D (2022) The effects of bioincising by Physisporinus vitreus on CuO retention and copper element leaching in oriental spruce wood. Maderas. Ciencia y Tecnología 24(27), 1-23. DOI: 10.4067/s0718-221x2022000100427
  • Bakir D (2022) Effects of different incising pretreatments in improving permeability in two refractory wood species. Bioresources 17(3), 5021-5037. DOI: 10.15376/biores.17.3.5021-5037
  • BS EN 113-1 (2020) Durability of wood and wood-based products. Test method against wood destroying basidiomycetes. BSI Standards Publication, London, England.
  • Chang L, Rong B, Xu G, Meng Q, Wang L (2020) Mechanical properties, components and decay resistance of Populus davidiana bioincised by Coriolus versicolor. J. Forestry Res. 31(5), 2023-2029. DOI: 10.1007/s11676-019-00972-3
  • Clausen CA (1995) Bacterial associations with decaying wood: A review. International Biodetertoration & Biodegradation 37(1-2), 101-107. DOI: 10.1016/0964-8305(95)00109-3
  • Dale A, Morris PI, Uzunovic A, Symons P, Stirling R (2019) Biological incising of lodgepole pine and white spruce lumber with Dichomitus squalens. European Journal of Wood and Wood Products 77(6), 1161-1176. DOI: 10.1007/s00107-019-01471-2
  • Danihelová A, Reinprecht L, Spišiak D, Hrčka R (2018) Impact of the Norway spruce sapwood treatment with the staining fungus Sydowia polyspora on its permeability and dynamic modulus of elasticity. Acta Facultatis Xylologiae Zvolen 60(1), 13-18. DOI: 10.17423/afx.2018.60.1.02
  • Durmaz S, Yıldız UC, Yıldız S (2015) Alkaline enzyme treatment of spruce wood to increase permeability. BioResources 10(3), 4403-4410. DOI: 10.15376/biores.10.3.4403-4410
  • Durmaz S, Yıldız UC (2016) Increasing the permeability of spruce sapwood (Picea orientalis L.) with enzymatic treatment. Artvin Coruh University Journal of Forestry Faculty, 17(1), 32–37. ISSN:2146-1880, eISSN: 2146-698X.
  • Emaminasab M, Tarmian A, Pourtahmasi K, Avramidis S (2016) Improving the permeability of Douglas-fir (Pseudotsuga menziesii) containing compression wood by Physisporinus vitreus and Xylaria longipes. International Wood Products Journal 7(3), 110-115. DOI: 10.1080/20426445.2016.1155788
  • Fuhr MJ, Stührk C, Münch B, Schwarze FWMR, Schubert M (2012a) Automated quantification of the impact of the wood decay fungus Physisporinus vitreus on the cell wall structure of Norway spruce by tomographic microscopy. Wood Science and Technology 46(4), 769-779. DOI: 10.1007/s00226-011-0442-y
  • Fuhr MJ, Stührk C, Schubert M, Schwarze FWMR, Herrmann HJ (2012b) Modelling the effect of environmental factors on the hyphal growth of the basidiomycete Physisporinus vitreus. Journal of Basic Microbiology 52(5), 523-530. DOI: 10.1002/jobm.201100425
  • Fuhr MJ, Schubert M, Stührk C, Schwarze FWMR, Herrmann HJ (2013) Penetration capacity of the wood-decay fungus Physisporinus vitreus. Complex Adaptive Systems Modeling 1, 1-15. DOI: 10.1186/2194-3206-1-6
  • Gilani MS, Boone MN, Mader K, Schwarze FWMR (2014) Synchrotron X-ray micro-tomography imaging and analysis of wood degraded by Physisporinus vitreus and Xylaria longipes. Journal of Structural Biology 187(2), 149-157. DOI: 10.1016/j.jsb.2014.06.003
  • Gilani MS, Schwarze FWMR (2015) Hygric properties of Norway spruce and sycamore after incubation with two white rot fungi. Holzforschung 69(1), 77-86. DOI: 10.1515/hf-2013-0247
  • Gündüz G, Aydemir D, Karakaş G (2009) The effects of thermal treatment on the mechanical properties of wild Pear (Pyrus elaeagnifolia Pall.) wood and changes in physical properties. Materials and Design 30 (10) 4391–4395. DOI:10.1016/j.matdes.2009.04.005
  • Hansmann C, Gindl W, Wimmer R, Teischinger A (2002) Permeability of wood – A review. Wood Research 47(4), 1-16.
  • Islam N, Ando K, Yamauchi H, Kobayashi Y, Hattori N (2007) Passive impregnation of liquid in impermeable lumber incised by laser. Journal of Wood Science 53(5), 436-441. DOI: 10.1007/s10086-006-0878-0
  • Islam N, Ando K, Yamauchi H, Kobayashi Y, Hattori N (2008) Comparative study between full cell and passive impregnation method of wood preservation for laser incised Douglas fir lumber. Wood Science and Technology 42(4), 343-350. DOI: 10.1007/s00226-007-0168-z
  • ISO 4859 (1982) Wood – determination of radial and tangential swelling, Geneva, Switzerland.
  • JMP Statistical Software (2020) JMP 1989-2007: Version 5.0, SAS Institute Inc., Cary, NC, USA. https://www.capterra.com/p/151815/JMP-Statistical-Software/
  • Kartal SN (2002) Effects of incising on treatability and leachability of CCA-C- treated eastern hemlock. Forest Products Journal 52(2), 44-48.
  • Kobayashi Y, Iida I, Imamura Y, Watanabe U (1998a) Improvement of penetrability of sugi wood by impregnation of bacteria using sap-flow method. Journal of Wood Science 44(6), 482-485. DOI: 10.1007/BF00833414
  • Kobayashi Y, Iida I, Imamura Y, Watanabe U (1998b) Drying and anatomical characteristics of sugi wood attacked by bacteria during pond storage. Journal of Wood Science 44(6), 432- 437. DOI: 10.1007/BF00833406
  • Lehringer C, Hillebrand K, Richter K, Arnold M, Schwarze FWMR, Militz H (2010) Anatomy of bioincised Norway spruce wood. International Biodeterioration & Biodegradation 64(5), 346-355. DOI: 10.1016/j.ibiod.2010.03.005
  • Matsumura J, Booker RE, Donaldson BGRLA, Mikajiri N, Matsunaga H, Oda K (1999) Impregnation of radiata pine wood by vacuum treatment II: effect of pre-steaming on wood structure and resin content. Journal of Wood Science, 45(6), 456– 462.
  • Messner K, Bruce A, Bongers HP (2003) Treatability of refractory wood species after fungal pre-treatment. In The First European Conference on Wood Modification. Ghent, Belgium. pp 389-401.
  • Morris PI (1995) Pasific silver fir is the more treatable component of hem-fir from coastal British Columbia. Forest Products Journal 45(9), 37-40.
  • Nath S, Waugh DG, Ormondroyd GA, Spear MJ, Pitman AJ, Sahoo S, Curling SF, Mason P (2020a) CO2 laser interactions with wood tissues during single pulse laser-incision. Optics and Laser Technology 126, article no. 106069, 1-21. DOI: 10.1016/j.optlastec.2020.106069
  • Nath S, Waugh DG, Ormondroyd GA, Spear M, Pitman A, Curling S, Mason P (2020b) Laser incising of wood: A review. Lasers in Engineering 45(4-6), 381-403.
  • Nath S, Waugh DG, Ormondroyd GA, Spear MJ, Curling SF, Pitman AJ, Mason P (2022) Percussion Nd:YAG laser incision of radiata pine: Efects of laser processing parameters and wood anatomy. Lasers in Manufacturing and Materials Processing 9(2), 173-192. DOI: 10.1007/s40516-022-00169-3
  • Pánek M, Reinprecht L (2011) Bacillus subtilis for improving spruce wood impregnability. BioResources 6(3), 2912-2931. DOI: 10.15376/biores.6.3.2912-2931
  • Panigrahi S, Kumar S, Panda S, Borkataki S (2018) Effect of permeability on primary processing of wood. Journal of Pharmacognosy Phytochemistry, 7(4), 2593–2598.
  • Perrin PW (1978) Review of incising and its effects on strength and preservative treatment of wood. Forest Products Journal 28(2), 27-33.
  • Ruddick JNR (1991) Laser incising of Canadian softwood to improve treatability. Forest Products Journal 41(4), 53-57.
  • Schubert M, Stührk C, Fuhr MJ, Schwarze FWMR (2013) Agrobacterium-mediated transformation of the white-rot fungus Physiologists vitreus. Journal of Microbiological Methods 95(2), 251-252. DOI: 10.1016/j.mimet.2013.09.001
  • Schubert M, Stührk C, Fuhr MJ, Schwarze FWMR (2014) Imaging hyphal growth of Physisporinus vitreus in Norway spruce wood by means of confocal laser scanning microscopy (CLSM). Holzforschung 68(6), 727-730. DOI: 10.1515/hf-2013-0183
  • Suzuki K, Teduka Y, Ando K, Hattori N, Kitayawa S, Kato H, Nagao H, Tanaka T (1996) Laser incising of wood, the effect of incising density on bending strength of sugi square lumber (in Japanese). in: Proceedings of the 46th Annual Meeting of the Japanese Wood Research Society, Kumamoto, Japan, pp.130.
  • Tajrishi IZ, Tarmian A, Oladi R, Humar M, Ahmadzadh M (2021) Biodegradation and microscale treatability pattern of loblolly pine heartwood bioincised by Bacillus subtilis and Physisporinus vitreus. Drvna Industrija 72(4), 365-372. DOI: 10.5552/drvind.2021.2034
  • TS 2472 (1976), Odunda fiziksel ve mekanik deneyler için birim hacim ağırlığı tayini, TSE, Ankara.
  • TS 2595 (1977), Odunun liflere paralel doğrultuda basınç dayanımı tayini, TSE, Ankara.
  • Ünligil HH (1972) Penetrability and strength of white spruce after ponding. Forest Products Journal 22, 92-100.
  • Wang JZ, DeGroot R (1996) Treatability and durability of heartwood. National Conference on Wood Transportation Structures. Madison, WI, USA. pp 252-260
  • Wang Y, Ando K, Hattori N. (2013) Changes in the anatomy of surface and liquid uptake of wood after laser incising. Wood Science and Technology 47(3), 447-455. DOI: 10.1007/s00226-012-0497-4
  • Watanabe U, Imamura Y, Iida I (1998) Liquid penetration of precompressed wood VI: Anatomical characterization of pit fractures. Journal of Wood Science 44(2), 158-162. DOI:10.1007/BF00526263
  • Winandy JE, Morrell JJ, Lebow ST (1995) Review of the effects of incising on treatability and strength. in: Proceedings of Wood Preservation in the 90’s and Beyond, Savannah, GA, USA, pp. 65- 69.
  • Winandy JE, Morrell JJ (1998) Effects of incising on lumber strength and stiffness: Relationships between incision density and depth, species, and MSR grade. Wood and Fiber Science 30(2), 185-197.
  • Winandy JE, Hassan B, Morrell JJ (2022) Review of the effects of incising on treatability and strength of wood. Wood Material Science and Engineering. DOI: 10.1080/17480272.2022.2028008
  • Yıldız S, Çanakçı S, Yıldız ÜC, Özgenç Ö, Tomak ED (2012) Improving of the impregnability of refractory spruce wood by Bacillus licheniformis pretreatment. BioResources 7(1), 565-577. DOI: 10.15376/biores.7.1.565-577

Ayrıntılar

Birincil Dil Türkçe
Konular Orman Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Davut BAKIR> (Sorumlu Yazar)
ARTVİN ÇORUH ÜNİVERSİTESİ
0000-0001-5480-1872
Türkiye

Destekleyen Kurum AÇÜ Bilimsel Araştırma Projeleri Koordinatörlüğü
Proje Numarası 2021.F11.02.02
Teşekkür Bu çalışma AÇÜ Bilimsel Araştırma Projeleri Koordinatörlüğü (Proje no: 2021.F11.02.02) tarafından finansal olarak desteklenmiştir.
Yayımlanma Tarihi 28 Ekim 2022
Yayınlandığı Sayı Yıl 2022, Cilt 23, Sayı 2

Kaynak Göster

Bibtex @araştırma makalesi { artvinofd1179285, journal = {Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi}, issn = {2146-1880}, eissn = {2146-698X}, address = {}, publisher = {Artvin Çoruh Üniversitesi}, year = {2022}, volume = {23}, number = {2}, pages = {175 - 183}, doi = {10.17474/artvinofd.1179285}, title = {Farklı delme ön işlemleri sonrası Avrupa melezi ve Doğu ladini odunlarının basınç direnci ve bazı fiziksel özelliklerindeki değişiklikler}, key = {cite}, author = {Bakır, Davut} }
APA Bakır, D. (2022). Farklı delme ön işlemleri sonrası Avrupa melezi ve Doğu ladini odunlarının basınç direnci ve bazı fiziksel özelliklerindeki değişiklikler . Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi , 23 (2) , 175-183 . DOI: 10.17474/artvinofd.1179285
MLA Bakır, D. "Farklı delme ön işlemleri sonrası Avrupa melezi ve Doğu ladini odunlarının basınç direnci ve bazı fiziksel özelliklerindeki değişiklikler" . Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 23 (2022 ): 175-183 <https://ofd.artvin.edu.tr/tr/pub/issue/73139/1179285>
Chicago Bakır, D. "Farklı delme ön işlemleri sonrası Avrupa melezi ve Doğu ladini odunlarının basınç direnci ve bazı fiziksel özelliklerindeki değişiklikler". Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 23 (2022 ): 175-183
RIS TY - JOUR T1 - Farklı delme ön işlemleri sonrası Avrupa melezi ve Doğu ladini odunlarının basınç direnci ve bazı fiziksel özelliklerindeki değişiklikler AU - DavutBakır Y1 - 2022 PY - 2022 N1 - doi: 10.17474/artvinofd.1179285 DO - 10.17474/artvinofd.1179285 T2 - Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi JF - Journal JO - JOR SP - 175 EP - 183 VL - 23 IS - 2 SN - 2146-1880-2146-698X M3 - doi: 10.17474/artvinofd.1179285 UR - https://doi.org/10.17474/artvinofd.1179285 Y2 - 2022 ER -
EndNote %0 Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi Farklı delme ön işlemleri sonrası Avrupa melezi ve Doğu ladini odunlarının basınç direnci ve bazı fiziksel özelliklerindeki değişiklikler %A Davut Bakır %T Farklı delme ön işlemleri sonrası Avrupa melezi ve Doğu ladini odunlarının basınç direnci ve bazı fiziksel özelliklerindeki değişiklikler %D 2022 %J Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi %P 2146-1880-2146-698X %V 23 %N 2 %R doi: 10.17474/artvinofd.1179285 %U 10.17474/artvinofd.1179285
ISNAD Bakır, Davut . "Farklı delme ön işlemleri sonrası Avrupa melezi ve Doğu ladini odunlarının basınç direnci ve bazı fiziksel özelliklerindeki değişiklikler". Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 23 / 2 (Ekim 2022): 175-183 . https://doi.org/10.17474/artvinofd.1179285
AMA Bakır D. Farklı delme ön işlemleri sonrası Avrupa melezi ve Doğu ladini odunlarının basınç direnci ve bazı fiziksel özelliklerindeki değişiklikler. AÇÜOFD. 2022; 23(2): 175-183.
Vancouver Bakır D. Farklı delme ön işlemleri sonrası Avrupa melezi ve Doğu ladini odunlarının basınç direnci ve bazı fiziksel özelliklerindeki değişiklikler. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi. 2022; 23(2): 175-183.
IEEE D. Bakır , "Farklı delme ön işlemleri sonrası Avrupa melezi ve Doğu ladini odunlarının basınç direnci ve bazı fiziksel özelliklerindeki değişiklikler", Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, c. 23, sayı. 2, ss. 175-183, Eki. 2022, doi:10.17474/artvinofd.1179285
Creative Commons Lisansı
Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi Creative Commons Alıntı 4.0 Uluslararası Lisansı ile lisanslanmıştır.