Research Article
BibTex RIS Cite

Çinko ve bakır gideriminde bir biyokütle kaynağı olarak defne yapraklarının kullanılması ve modellenmesi

Year 2019, Volume: 20 Issue: 2, 262 - 271, 15.09.2019
https://doi.org/10.17474/artvinofd.580648

Abstract

Türkiye’de kereste
dışı orman ürünlerinden olan tıbbi ve aromatik bitkiler sosyo-ekonomik açıdan
bu yüzyılda önem kazanmaya başlamıştır.
Bu çalışmada defne yapraklarından (LNL) hazırlanan bir biyokütle
biyosorban olarak kullanılmıştır.  Biyosorbent
dozajı, çözelti pH'sı, temas süresi, başlangıçtaki ağır metal iyonları
konsantrasyonu, iyonik kuvvet, hümik asit etkisi ve LNL ile Bakır (II) ve çinko
(II) 'nun biyosorpsiyonu üzerindeki rekabetçi etkiler incelenmiştir.
Biyosorbent, FT-IR ve SEM görüntüleri kullanılarak karakterize edilmiştir.
Doğrusallaştırılmış ve doğrusallaştırılmamış izoterm modelleri karşılaştırılmış
ve tartışılmıştır. Zn (II) ve Cu (II) biyosorpsiyonu, Temkin denklemiyle daha
iyi uyum sağlamış ve sahte ikinci derece reaksiyon kinetiği, her iki ağır
metalin biyosorpsiyon davranışlarıyla da uyum göstermistir. Ayrıca, ağır metal
biyosorpsiyonu için doğrusal olmayan en uygun izoterm denklemine dayanan tek
kademeli bir toplu biyoreaktör sistemi de sunulmuştur. Ağır metal giderimini
ortamdaki diğer iyonların varlığı bir miktar etkilemiştir. Bu çalışmalar
LNL'nin çinko ve bakır iyonlarını kirli sulardan uzaklaştırmak için, ucuz ve
bol bulunan bir biyosorban olarak, değerlendirilebileceğini göstermiştir.

Supporting Institution

Sinop Üniversitesi

Project Number

RBB -1901-16-28

References

  • Araújo, C. S., Almeida, I. L., Rezende, H. C., Marcionilio, S. M., Léon, J. J., & de Matos, T. N. 2018. Elucidation of mechanism involved in adsorption of Pb (II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchemical Journal, 137, 348-354.
  • Bayo, J., Esteban, G. & Castillo, J. 2012. The use of native and protonated grapefruit biomass (Citrus paradisi L.) for cadmium (II) biosorption: equilibrium and kinetic modelling, Environmental technology, 33(7), 761-772.
  • Bayram, E., Kırıcı, S., Tansı, S., Yılmaz, G., Arabacı, O., Kızıl, S., & Telci, İ. (2010). Tıbbi Bitkilerin Üretiminin Arttırılması Olanakları. VII. Türkiye Ziraat Mühendisliği Teknik Kongresi Bildiriler Kitabı-1, 453-484.
  • Choi, J.W., Chung, S.G., Hong, S.W., Kim, D.J., Lee, S.H. 2012. Development of an environmentally friendly adsorbent for the removal of toxic heavy metals from aqueous solution, Water Air Soil Pollut. 223: 1837–1846. doi: 10.1007/s11270-011-0988-1.
  • Choudhary, B. & Paul, D. 2018. Isotherms, kinetics and thermodynamics of hexavalent chromium removal using biochar, Journal of Environmental Chemical Engineering, 6(2), 2335-2343.
  • Dawood, S. & Sen, T. K. (2012) Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design. Water research, 46(6), 1933-1946. https://doi.org/10.1016/j.watres.2012.01.009
  • Gümüş, D. 2018. Biosorptive application of defatted Laurus nobilis leaves as a waste material for treatment of water contaminated with heavy metal, International journal of phytoremediation, 1-8.
  • Gümüş D, & Akbal F. 2017. A comparative study of ozonation, iron coated zeolite catalyzed ozonation and granular activated carbon catalyzed ozonation of humic acid. Chemosphere, 174, 218-231.
  • Hafshejani, L. D., Nasab, S. B., Gholami, R. M., Moradzadeh, M., Izadpanah, Z., Hafshejani, S. B., & Bhatnagar, A. 2015. Removal of zinc and lead from aqueous solution by nanostructured cedar leaf ash as biosorbent. Journal of molecular liquids, 211, 448-456.
  • Ho, Y.S. Review of second-order models for adsorption systems. 2006. Journal of Hazardous Materials, 136, 681–689.
  • Hussin, Talib Z. M., Hussin, Hanafiah N.M, M. A. & Khalir, W. K. 2015. Methylene blue adsorption onto NaOH modified durian leaf powder: isotherm and kinetic studies. American Journal of Environmental Engineering, 5(3A), 38-43.
  • Jaman, H.. Chakraborty, D., & Saha P. 2009. A study of the thermodynamics and kinetics of copper adsorption using chemically modified rice husk. CLEAN–Soil, Air, Water. 37(9): 704-711. doi: 10.1002/clen.200900138
  • Kamari, A., Yusof, S.N., Abdullah, F. & Putra, W.P. 2014. Biosorptive removal of Cu (II), Ni (II) and Pb (II) ions from aqueous solutions using coconut dregs residue: Adsorption and characterization studies. J.Environ. Chemical Eng. 2(4): 1912-1919. https://doi.org/10.1016/j.jece.2014.08.014
  • Kumar, S., Singh, J. & Sharma A. Bay leaves. 2004. In: Handbook of herbs and spices, (Ed.): K.V. Peter. Woodhead Publishing Limited, Cambridge, England.
  • Lagergren, S. 1898. Zur theorie der sogenannten adsorption gelöster stoffe, K. Sven, Vetenskapsakad. Handl. 24. 1–39.
  • Laskar, M. A, Ali, S. K. & Siddiqui, S. 2016. A potential bio-sorbent for heavy metals in the remediation of waste water. Journal of Sustainable Development of Energy, Water and Environment Systems, 4(4), 320-332. https://doi.org/10.13044/j.sdewes.2016.04.0025
  • Liu, C., Bai, R. & San Ly, Q. 2008. Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: behaviors and mechanisms, Water Research, 42(6-7), 1511-1522.
  • Matouq, M., Jildeh N., Qtaishat, M., Hindiyeh, M. & Al Syouf, M.Q. 2015. The adsorption kinetics and modeling for heavy metals removal from wastewater by Moringa pods. J. Environ. Chemical Eng. 3(2): 775-784. doi: 10.1016/j.jece.2015.03.027
  • Mishra, P.C. & Patel, R.K.2009. Removal of lead and zinc ions from water by low cost adsorbents, Journal of Hazardous Materials, 168(1), 319-325.
  • Morosanu, I. Teodosiu, C. Paduraru, C. Ibanescu, D. & Tofan L. 2017. Biosorption of lead ions from aqueous effluents by rapeseed biomass, New biotechnology, 3: 110-124.
  • Ngah, W. W. & Hanafiah, M.A. K.M. 2008. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review, Bioresource technology, 99(10), 3935-3948.
  • Obike, A.I, Igwe, J. C, Emeruwa, C. N. & Uwakwe, K. J. 2018. Equilibrium and kinetic studies of Cu (II), Cd (II), Pb (II) and Fe (II) adsorption from aqueous solution using cocoa (Theobroma cacao) pod husk, Journal of Applied Science and Environmental Management, 22(2): 182-190.
  • Peixoto, L.R, Rosalen P.L., Ferreira, G. L.S., Freires I.A., de Carvalho, F.G., Castellano, L.R. & de Castro R.D. 2017. Antifungal activity, mode of action and anti-biofilm effects of Laurus nobilis Linnaeus essential oil against Candida spp. Archives of Oral Biology. 73: 179-185.
  • Rao, K.S., Mohapatra, M., Anand, S. & Venkateswarlu, P. 2010. Review on cadmium removal from aqueous solutions. International Journal of Engineering Science and Technology 2(7).
  • Reddy, D,D., Ghosh, R.K., Bindu, J.P., Mahadevaswamy, M. & Murthy, T.G.K. (2017) Removal of methylene blue from aqueous system using tobacco stems biomass: Kinetics, mechanism and single stage adsorber design. Environmental Progress & Sustainable Energy, 36(4), 1005-1012. https://doi.org/10.1002/ep.12542
  • Sahmoune, M.N. 2018. Performance of Streptomyces rimosus biomass in biosorption of heavy metals from aqueous solutions. Microchemical Journal.
  • Semerci, A., & Çelik, A. D. (2017). Defne Bitkisinin Hatay İli Ekonomisindeki Yeri ve Önemi. SDÜ Ziraat Fakültesi Dergisi, 12(2), 125-134.
  • Saraeian, A., Hadio, A., Raji, F., Ghassemi, A. & Johnson, M. 2018. Cadmium removal from aqueous solution by low-cost native and surface modified Sorghum x drummondii (Sudangrass), Journal of Environmental Chemical Engineering, 6(2), 3322-3331.
  • Shukla, S.R., Pai, RS. 2005. Adsorption of Cu(II), Ni(II) and Zn(II) on dye loadedgroundnut shells and sawdust, Sep. Purif. Technol. 43: 1–8. doi: 10.1016/j.seppur.2004.09.003
  • Tang, W.W., Zeng, G.M., Gong, J.L., Liang, J., Xu, P., Zhang, C., Huang, B.B. 2014. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review, Science of Total Environment, 468–469, 1014–1027.
  • Xiong, C. & Yao, C. 2009. Synthesis, characterization and application of triethylenetetramine modified polystyrene resin in removal of mercury, cadmium and lead from aqueous solutions. Chemical Engineering Journal, 155(3), 844-850.
  • Yan, C., Li, G., Xue, P., Wei, Q.. & Li, Q. 2010. Competitive effect of Cu (II) and Zn (II) on the biosorption of lead (II) by Myriophyllum spicatum, Journal of Hazardous Materials 179(1-3), 721-728.
  • Yargıç, A. Ş., Şahin, R. Y., Özbay, N. & Önal, E. 2015. Assessment of toxic copper (II) biosorption from aqueous solution by chemically-treated tomato waste. Journal of Cleaner Production, 88, 152-159.
  • Yasin, S. A & Qasim, A. K. 2018. Kinetic Study of Adsorption of Hexavalent Chromium in Aqueous Solution using Bay Leaf (Laurus Nobilis) as New Bio-Adsorbent. Science Journal of University of Zakho, 6(3), 104-107. https://doi.org/10.25271/sjuoz.2018.6.3.513

Modeling and utilization of laurel leaves as a biomass source for the removal of zinc and copper

Year 2019, Volume: 20 Issue: 2, 262 - 271, 15.09.2019
https://doi.org/10.17474/artvinofd.580648

Abstract

One of the most
important non-timber forest products in Turkey, medicinal and aromatic plants,
especially in the last century have become important socio-economic values. The
biosorbent used in this study was prepared from Laurus nobilis L. leaves (LNL). 
The effects of biosorbent dosage, biosorption time, solution pH, initial
zinc and copper ions concentration, humic acid or ionic strength or competitive
effects on the biosorption of copper and zinc by LNL were investigated.
The LNL biomass was characterized using SEM and FT-IR
spectrum
. The linearized and non-linearized isotherm models
were compared and discussed.
Zn(II) and
Cu(II) biosorption fitted better in the Temkin
equation and Pseudo
second-order kinetic
model successfully
described the biomass behaviors of both heavy metals.
Additionally, a single-stage batch bioreactor system
for heavy metal biosorption based on the best fit non-linear isotherm equation
also has been presented.
It was found that
heavy metal removal efficiencies were affected by
competitive biosorption studies. Finally, these
studies showed that the LNL can be used as an inexpensive and abundant
biosorbent for removing zinc and copper ions from contaminated waters. 

Project Number

RBB -1901-16-28

References

  • Araújo, C. S., Almeida, I. L., Rezende, H. C., Marcionilio, S. M., Léon, J. J., & de Matos, T. N. 2018. Elucidation of mechanism involved in adsorption of Pb (II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchemical Journal, 137, 348-354.
  • Bayo, J., Esteban, G. & Castillo, J. 2012. The use of native and protonated grapefruit biomass (Citrus paradisi L.) for cadmium (II) biosorption: equilibrium and kinetic modelling, Environmental technology, 33(7), 761-772.
  • Bayram, E., Kırıcı, S., Tansı, S., Yılmaz, G., Arabacı, O., Kızıl, S., & Telci, İ. (2010). Tıbbi Bitkilerin Üretiminin Arttırılması Olanakları. VII. Türkiye Ziraat Mühendisliği Teknik Kongresi Bildiriler Kitabı-1, 453-484.
  • Choi, J.W., Chung, S.G., Hong, S.W., Kim, D.J., Lee, S.H. 2012. Development of an environmentally friendly adsorbent for the removal of toxic heavy metals from aqueous solution, Water Air Soil Pollut. 223: 1837–1846. doi: 10.1007/s11270-011-0988-1.
  • Choudhary, B. & Paul, D. 2018. Isotherms, kinetics and thermodynamics of hexavalent chromium removal using biochar, Journal of Environmental Chemical Engineering, 6(2), 2335-2343.
  • Dawood, S. & Sen, T. K. (2012) Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design. Water research, 46(6), 1933-1946. https://doi.org/10.1016/j.watres.2012.01.009
  • Gümüş, D. 2018. Biosorptive application of defatted Laurus nobilis leaves as a waste material for treatment of water contaminated with heavy metal, International journal of phytoremediation, 1-8.
  • Gümüş D, & Akbal F. 2017. A comparative study of ozonation, iron coated zeolite catalyzed ozonation and granular activated carbon catalyzed ozonation of humic acid. Chemosphere, 174, 218-231.
  • Hafshejani, L. D., Nasab, S. B., Gholami, R. M., Moradzadeh, M., Izadpanah, Z., Hafshejani, S. B., & Bhatnagar, A. 2015. Removal of zinc and lead from aqueous solution by nanostructured cedar leaf ash as biosorbent. Journal of molecular liquids, 211, 448-456.
  • Ho, Y.S. Review of second-order models for adsorption systems. 2006. Journal of Hazardous Materials, 136, 681–689.
  • Hussin, Talib Z. M., Hussin, Hanafiah N.M, M. A. & Khalir, W. K. 2015. Methylene blue adsorption onto NaOH modified durian leaf powder: isotherm and kinetic studies. American Journal of Environmental Engineering, 5(3A), 38-43.
  • Jaman, H.. Chakraborty, D., & Saha P. 2009. A study of the thermodynamics and kinetics of copper adsorption using chemically modified rice husk. CLEAN–Soil, Air, Water. 37(9): 704-711. doi: 10.1002/clen.200900138
  • Kamari, A., Yusof, S.N., Abdullah, F. & Putra, W.P. 2014. Biosorptive removal of Cu (II), Ni (II) and Pb (II) ions from aqueous solutions using coconut dregs residue: Adsorption and characterization studies. J.Environ. Chemical Eng. 2(4): 1912-1919. https://doi.org/10.1016/j.jece.2014.08.014
  • Kumar, S., Singh, J. & Sharma A. Bay leaves. 2004. In: Handbook of herbs and spices, (Ed.): K.V. Peter. Woodhead Publishing Limited, Cambridge, England.
  • Lagergren, S. 1898. Zur theorie der sogenannten adsorption gelöster stoffe, K. Sven, Vetenskapsakad. Handl. 24. 1–39.
  • Laskar, M. A, Ali, S. K. & Siddiqui, S. 2016. A potential bio-sorbent for heavy metals in the remediation of waste water. Journal of Sustainable Development of Energy, Water and Environment Systems, 4(4), 320-332. https://doi.org/10.13044/j.sdewes.2016.04.0025
  • Liu, C., Bai, R. & San Ly, Q. 2008. Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: behaviors and mechanisms, Water Research, 42(6-7), 1511-1522.
  • Matouq, M., Jildeh N., Qtaishat, M., Hindiyeh, M. & Al Syouf, M.Q. 2015. The adsorption kinetics and modeling for heavy metals removal from wastewater by Moringa pods. J. Environ. Chemical Eng. 3(2): 775-784. doi: 10.1016/j.jece.2015.03.027
  • Mishra, P.C. & Patel, R.K.2009. Removal of lead and zinc ions from water by low cost adsorbents, Journal of Hazardous Materials, 168(1), 319-325.
  • Morosanu, I. Teodosiu, C. Paduraru, C. Ibanescu, D. & Tofan L. 2017. Biosorption of lead ions from aqueous effluents by rapeseed biomass, New biotechnology, 3: 110-124.
  • Ngah, W. W. & Hanafiah, M.A. K.M. 2008. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review, Bioresource technology, 99(10), 3935-3948.
  • Obike, A.I, Igwe, J. C, Emeruwa, C. N. & Uwakwe, K. J. 2018. Equilibrium and kinetic studies of Cu (II), Cd (II), Pb (II) and Fe (II) adsorption from aqueous solution using cocoa (Theobroma cacao) pod husk, Journal of Applied Science and Environmental Management, 22(2): 182-190.
  • Peixoto, L.R, Rosalen P.L., Ferreira, G. L.S., Freires I.A., de Carvalho, F.G., Castellano, L.R. & de Castro R.D. 2017. Antifungal activity, mode of action and anti-biofilm effects of Laurus nobilis Linnaeus essential oil against Candida spp. Archives of Oral Biology. 73: 179-185.
  • Rao, K.S., Mohapatra, M., Anand, S. & Venkateswarlu, P. 2010. Review on cadmium removal from aqueous solutions. International Journal of Engineering Science and Technology 2(7).
  • Reddy, D,D., Ghosh, R.K., Bindu, J.P., Mahadevaswamy, M. & Murthy, T.G.K. (2017) Removal of methylene blue from aqueous system using tobacco stems biomass: Kinetics, mechanism and single stage adsorber design. Environmental Progress & Sustainable Energy, 36(4), 1005-1012. https://doi.org/10.1002/ep.12542
  • Sahmoune, M.N. 2018. Performance of Streptomyces rimosus biomass in biosorption of heavy metals from aqueous solutions. Microchemical Journal.
  • Semerci, A., & Çelik, A. D. (2017). Defne Bitkisinin Hatay İli Ekonomisindeki Yeri ve Önemi. SDÜ Ziraat Fakültesi Dergisi, 12(2), 125-134.
  • Saraeian, A., Hadio, A., Raji, F., Ghassemi, A. & Johnson, M. 2018. Cadmium removal from aqueous solution by low-cost native and surface modified Sorghum x drummondii (Sudangrass), Journal of Environmental Chemical Engineering, 6(2), 3322-3331.
  • Shukla, S.R., Pai, RS. 2005. Adsorption of Cu(II), Ni(II) and Zn(II) on dye loadedgroundnut shells and sawdust, Sep. Purif. Technol. 43: 1–8. doi: 10.1016/j.seppur.2004.09.003
  • Tang, W.W., Zeng, G.M., Gong, J.L., Liang, J., Xu, P., Zhang, C., Huang, B.B. 2014. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review, Science of Total Environment, 468–469, 1014–1027.
  • Xiong, C. & Yao, C. 2009. Synthesis, characterization and application of triethylenetetramine modified polystyrene resin in removal of mercury, cadmium and lead from aqueous solutions. Chemical Engineering Journal, 155(3), 844-850.
  • Yan, C., Li, G., Xue, P., Wei, Q.. & Li, Q. 2010. Competitive effect of Cu (II) and Zn (II) on the biosorption of lead (II) by Myriophyllum spicatum, Journal of Hazardous Materials 179(1-3), 721-728.
  • Yargıç, A. Ş., Şahin, R. Y., Özbay, N. & Önal, E. 2015. Assessment of toxic copper (II) biosorption from aqueous solution by chemically-treated tomato waste. Journal of Cleaner Production, 88, 152-159.
  • Yasin, S. A & Qasim, A. K. 2018. Kinetic Study of Adsorption of Hexavalent Chromium in Aqueous Solution using Bay Leaf (Laurus Nobilis) as New Bio-Adsorbent. Science Journal of University of Zakho, 6(3), 104-107. https://doi.org/10.25271/sjuoz.2018.6.3.513
There are 34 citations in total.

Details

Primary Language English
Subjects Environmental Sciences
Journal Section Research Article
Authors

Dilek Gumus 0000-0001-7665-3057

Fatih Gumus 0000-0002-4660-7591

Project Number RBB -1901-16-28
Publication Date September 15, 2019
Acceptance Date October 1, 2019
Published in Issue Year 2019Volume: 20 Issue: 2

Cite

APA Gumus, D., & Gumus, F. (2019). Modeling and utilization of laurel leaves as a biomass source for the removal of zinc and copper. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 20(2), 262-271. https://doi.org/10.17474/artvinofd.580648
AMA Gumus D, Gumus F. Modeling and utilization of laurel leaves as a biomass source for the removal of zinc and copper. ACUJFF. September 2019;20(2):262-271. doi:10.17474/artvinofd.580648
Chicago Gumus, Dilek, and Fatih Gumus. “Modeling and Utilization of Laurel Leaves As a Biomass Source for the Removal of Zinc and Copper”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 20, no. 2 (September 2019): 262-71. https://doi.org/10.17474/artvinofd.580648.
EndNote Gumus D, Gumus F (September 1, 2019) Modeling and utilization of laurel leaves as a biomass source for the removal of zinc and copper. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 20 2 262–271.
IEEE D. Gumus and F. Gumus, “Modeling and utilization of laurel leaves as a biomass source for the removal of zinc and copper”, ACUJFF, vol. 20, no. 2, pp. 262–271, 2019, doi: 10.17474/artvinofd.580648.
ISNAD Gumus, Dilek - Gumus, Fatih. “Modeling and Utilization of Laurel Leaves As a Biomass Source for the Removal of Zinc and Copper”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 20/2 (September 2019), 262-271. https://doi.org/10.17474/artvinofd.580648.
JAMA Gumus D, Gumus F. Modeling and utilization of laurel leaves as a biomass source for the removal of zinc and copper. ACUJFF. 2019;20:262–271.
MLA Gumus, Dilek and Fatih Gumus. “Modeling and Utilization of Laurel Leaves As a Biomass Source for the Removal of Zinc and Copper”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, vol. 20, no. 2, 2019, pp. 262-71, doi:10.17474/artvinofd.580648.
Vancouver Gumus D, Gumus F. Modeling and utilization of laurel leaves as a biomass source for the removal of zinc and copper. ACUJFF. 2019;20(2):262-71.
Creative Commons License
Artvin Coruh University Journal of Forestry Faculty is licensed under a Creative Commons Attribution 4.0 International License.